OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 20 — Jul. 10, 2013
  • pp: 4950–4958

Separation of microparticles suspended in a minichannel using laser radiation pressure

Mohammad Zabetian, Mohammad Said Saidi, Mohammad Behshad Shafii, and Mohammad Hassan Saidi  »View Author Affiliations

Applied Optics, Vol. 52, Issue 20, pp. 4950-4958 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical separation, which is a contactless and accurate technique, has been mostly used to manipulate single particles. This work mainly aims to present an effective technique for optical propulsion and separation of a group of microscopic particles that are suspended in liquids. An experimental study is conducted to assess the effect of radiation pressure of a high-power laser on a dilute dispersion of microparticles in water using microscopic image analysis. Results of separation experiments indicate that the manipulation mechanism is capable of sorting the microscopic particles in two size classes. Compared to common optical separators, this configuration has a benefit of separating many particles simultaneously.

© 2013 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(100.2960) Image processing : Image analysis
(110.0180) Imaging systems : Microscopy
(140.3390) Lasers and laser optics : Laser materials processing

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 18, 2013
Manuscript Accepted: May 30, 2013
Published: July 9, 2013

Mohammad Zabetian, Mohammad Said Saidi, Mohammad Behshad Shafii, and Mohammad Hassan Saidi, "Separation of microparticles suspended in a minichannel using laser radiation pressure," Appl. Opt. 52, 4950-4958 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008). [CrossRef]
  2. S. Chowdhury, P. Svec, C. Wang, K. T. Seale, J. P. Wikswo, W. Losert, and S. K. Gupta, “Automated cell transport in optical tweezers-assisted microfluidic chambers,” IEEE Trans. Autom. Sci. Eng. 99, 1–10 (2013). [CrossRef]
  3. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  4. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  5. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. 94, 4853–4860 (1997). [CrossRef]
  6. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: a Reprint Volume with Commentaries (World Scientific, 2006).
  7. S. B. Kim, D. K. Song, and S. S. Kim, “Optical differential mobility analyzer for micron size colloidal particles: theoretical approach,” J. Colloid Interface Sci. 311, 102–109 (2007). [CrossRef]
  8. S. B. Kim, E. Jung, H. J. Sung, and S. S. Kim, “Optical mobility in cross-type optical particle separation,” Appl. Phys. Lett. 93, 044103 (2008). [CrossRef]
  9. K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007). [CrossRef]
  10. A. van der Horst, P. D. van Oostrum, A. Moroz, A. van Blaaderen, and M. Dogterom, “High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers,” Appl. Opt. 47, 3196–3202 (2008). [CrossRef]
  11. S. K. Hoi, C. Udalagama, C. H. Sow, and A. A. Bettiol, “Microfluidic sorting system based on optical force switching,” Proc. SPIE 7593, 759313 (2010).
  12. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83, 5316–5318 (2003). [CrossRef]
  13. M. Tamagawa, H. Monjushiro, and H. Watarai, “Microgravity laser-photophoresis of high density microparticles in water,” Colloids Surf. A 220, 279–284 (2003). [CrossRef]
  14. Y. Zhang and B. Li, “Particle sorting using a subwavelength optical fiber,” Laser Photon. Rev. 7, 289–296 (2013). [CrossRef]
  15. H. Monjushiro, A. Hirai, and H. Watarai, “Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water,” Langmuir 16, 8539–8542 (2000). [CrossRef]
  16. K. Grujic, O. Hellesø, J. Wilkinson, and J. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004). [CrossRef]
  17. H. Chen, C. Wang, and Y. Lou, “Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments,” IEEE Trans. Biomed. Eng. 60, 1518–1527 (2013). [CrossRef]
  18. A.-T. Chang, Y.-R. Chang, S. Chi, and L. Hsu, “Optimization of probe-laser focal offsets for single-particle tracking,” Appl. Opt. 51, 5643–5648 (2012). [CrossRef]
  19. R. C. Gauthier and M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6431 (1998). [CrossRef]
  20. E. B. Postnikov and I. M. Sokolov, “Model of lateral diffusion in ultrathin layered films,” Phys. A 391, 5095–5101 (2012). [CrossRef]
  21. H. Eral, J. Oh, D. van den Ende, F. Mugele, and M. Duits, “Anisotropic and hindered diffusion of colloidal particles in a closed cylinder,” Langmuir 26, 16722–16729 (2010). [CrossRef]
  22. S. J. Williams, C. Park, and S. T. Wereley, “Advances and applications on microfluidic velocimetry techniques,” Microfluid. Nanofluid. 8, 709–726 (2010). [CrossRef]
  23. S. D. Peterson, H. S. Chuang, and S. T. Wereley, “Three-dimensional particle tracking using micro-particle image velocimetry hardware,” Meas. Sci. Technol. 19, 115406 (2008). [CrossRef]
  24. J. S. Guasto and K. S. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45, 157–166 (2008). [CrossRef]
  25. J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008). [CrossRef]
  26. J. E. Pickard and K. Ley, “Micro-PTV measurement of the fluid shear stress acting on adherent leukocytes in vivo,” Biophys. J. 96, 4249–4259 (2009). [CrossRef]
  27. Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells,” Appl. Opt. 45, 3885–3892 (2006). [CrossRef]
  28. M. Zabetian, M. S. Saidi, M. H. Saidi, and M. B. Shafii, “Thermal interaction of laser beam with particulate flow in mini-channels,” in 9th International Conference on Nanochannels, Microchannels, and Minichannels (ASME, 2011).
  29. S. Koyanaka and S. Endoh, “Three-dimensional analysis of the movement of various micron-sized particles under laser radiation pressure,” Powder Technol. 116, 13–22 (2001). [CrossRef]
  30. http://www.laser-wave.com .
  31. G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer, 2005), Vol. 29.
  32. http://www.cospheric.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited