OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5065–5071

Asymmetric wavelet reconstruction of particle hologram with an elliptical Gaussian beam illumination

Xuecheng Wu, Yingchun Wu, Binwu Zhou, Zhihua Wang, Xiang Gao, Gérard Gréhan, and Kefa Cen  »View Author Affiliations


Applied Optics, Vol. 52, Issue 21, pp. 5065-5071 (2013)
http://dx.doi.org/10.1364/AO.52.005065


View Full Text Article

Enhanced HTML    Acrobat PDF (1988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an asymmetric wavelet method to reconstruct a particle from a hologram illuminated by an elliptical, astigmatic Gaussian beam. The particle can be reconstructed by a convolution of the asymmetric wavelet and hologram. The reconstructed images have the same size and resolution as the recorded hologram; therefore, the reconstructed 3D field is convenient for automatic particle locating and sizing. The asymmetric wavelet method is validated by both simulated holograms of spherical particles and experimental holograms of opaque, nonspherical coal particles.

© 2013 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: March 8, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: May 16, 2013
Published: July 12, 2013

Citation
Xuecheng Wu, Yingchun Wu, Binwu Zhou, Zhihua Wang, Xiang Gao, Gérard Gréhan, and Kefa Cen, "Asymmetric wavelet reconstruction of particle hologram with an elliptical Gaussian beam illumination," Appl. Opt. 52, 5065-5071 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-21-5065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Adams, T. M. Kreis, and W. P. O. Jueptner, “Particle size and position measurement with digital holography,” Proc. SPIE 3098, 234–240 (1997). [CrossRef]
  2. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008). [CrossRef]
  3. Y. Yang and B.-S. Kang, “Experimental validation for the determination of particle positions by the correlation coefficient method in digital particle holography,” Appl. Opt. 47, 5953–5960 (2008). [CrossRef]
  4. L. Tian, N. Loomis, J. A. Dominguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010). [CrossRef]
  5. S.-I. Satake, Y. Yonemoto, T. Kikuchi, and T. Kunugi, “Detection of microbubble position by a digital hologram,” Appl. Opt. 50, 5999–6005 (2011). [CrossRef]
  6. D. K. Singh and P. K. Panigrahi, “Automatic threshold technique for holographic particle field characterization,” Appl. Opt. 51, 3874–3887 (2012). [CrossRef]
  7. Y. Yang, G. Y. Li, L. L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt. 51, 255–267 (2012). [CrossRef]
  8. S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005). [CrossRef]
  9. L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holographic imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47, 4501–4508 (2008). [CrossRef]
  10. Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48, 7000–7007 (2009). [CrossRef]
  11. S. Kim and S. J. Lee, “Measurement of dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Exp. Fluids 46, 255–264 (2009). [CrossRef]
  12. Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt. 50, H22–H29 (2011). [CrossRef]
  13. Y. Wu, X. Wu, Z. Wang, G. Gréhan, L. Chen, and K. Cen, “Measurement of microchannel flow with digital holographic microscopy by integrated nearest neighbor and cross-correlation particle pairing,” Appl. Opt. 50, H297–H305 (2011). [CrossRef]
  14. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010). [CrossRef]
  15. D. Lebrun, S. Belad, and C. Zkul, “Hologram reconstruction by use of optical wavelet transform,” Appl. Opt. 38, 3730–3734 (1999). [CrossRef]
  16. M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003). [CrossRef]
  17. C. S. Vikram and B. J. Thompson, Particle Field Holography (Cambridge University, 2005), Vol. 11.
  18. N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Appl. Opt. 47, 4147–4157 (2008). [CrossRef]
  19. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010). [CrossRef]
  20. F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. Janssen, “Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” J. Opt. Soc. Am. A 22, 2569–2577 (2005). [CrossRef]
  21. M. Brunel, H. Shen, S. Coëtmellec, and D. Lebrun, “Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond digital in-line holography with anamorphic optical systems,” Appl. Opt. 51, 1137–1148 (2012). [CrossRef]
  22. J. Crane, P. Dunn, B. J. Thompson, J. Knapp, and J. Zeiss, “Far-field holography of ampule contaminants,” Appl. Opt. 21, 2548–2553 (1982). [CrossRef]
  23. C. Vikram and M. Billet, “Fraunhofer holography in cylindrical tunnels: neutralizing window curvature effects,” Opt. Eng. 25, 251189 (1986). [CrossRef]
  24. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,” Opt. Lett. 26, 974–976 (2001). [CrossRef]
  25. S. Grilli, P. Ferraro, S. D. Nicola, A. Finizio, and G. Pierattini, “Whole optical wavefields reconstruction by digital hologaphy,” Opt. Express 9, 294–302 (2001). [CrossRef]
  26. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Lasers Eng. 37, 331–340 (2002). [CrossRef]
  27. J. Collins and A. Stuart, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  28. J. Wen and M. Breazeale, “A diffraction beam field expressed as the superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752–1756 (1988). [CrossRef]
  29. M. Malek, S. Coëtmellec, D. Allano, and D. Lebrun, “Formulation of in-line holography process by a linear shift invariant system: application to the measurement of fiber diameter,” Opt. Commun. 223, 263–271 (2003). [CrossRef]
  30. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).
  31. Y. Yuan, K. Ren, S. Coëtmellec, and D. Lebrun, “Rigorous description of holograms of particles illuminated by an astigmatic elliptical Gaussian beam,” J. Phys. 147, 012052 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited