OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5083–5087

Talbot effect of quasi-periodic grating

Chong Zhang, Wei Zhang, Furui Li, Junhong Wang, and Shuyun Teng  »View Author Affiliations

Applied Optics, Vol. 52, Issue 21, pp. 5083-5087 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretic and experimental studies of the Talbot effect of quasi-periodic gratings are performed in this paper. The diffractions of periodic and quasi-periodic square aperture arrays in Fresnel fields are analyzed according to the scalar diffraction theory. The expressions of the diffraction intensities of two types of quasi-periodic gratings are deduced. Talbot images of the quasi-periodic gratings are predicted to appear at multiple certain distances. The quasi-periodic square aperture arrays are produced with the aid of a liquid crystal light modulator, and the self-images of the quasi-periodic gratings are measured successfully in the experiment. This study indicates that even a structure in short-range disorder may take on the self-imaging effect in a Fresnel field.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(260.1960) Physical optics : Diffraction theory

ToC Category:
Diffraction and Gratings

Original Manuscript: April 26, 2013
Revised Manuscript: June 2, 2013
Manuscript Accepted: June 17, 2013
Published: July 12, 2013

Chong Zhang, Wei Zhang, Furui Li, Junhong Wang, and Shuyun Teng, "Talbot effect of quasi-periodic grating," Appl. Opt. 52, 5083-5087 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 401–407 (1836).
  2. C. Zhou, S. Stankovic, C. Denz, and T. Tschuli, “Phasecodes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999). [CrossRef]
  3. M. A. Araiza-Esquivel, L. Martínez-León, B. Javidi, P. Andrés, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot effect,” Appl. Opt. 50, B96–B101 (2011). [CrossRef]
  4. N. Bonod and J. Neauport, “Design of a full-silica pulse-compression grating,” Opt. Lett. 33, 458–460 (2008). [CrossRef]
  5. D. Pabœuf, D. Vijayakumar, O. B. Jensen, B. Thestrup, J. Lim, S. Sujecki, E. Larkins, G. Lucas-Leclin, and P. Georges, “Volume Bragg grating external cavities for the passive phase locking of high-brightness diode laser arrays: theoretical and experimental study,” J. Opt. Soc. Am. B 28, 1289–1299 (2011). [CrossRef]
  6. L. R. Liu, “Partially coherent diffraction effect between Lau and Talbot effects,” J. Opt. Soc. Am. A 5, 1709–1716 (1988). [CrossRef]
  7. P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt. 31, 80–89 (1992). [CrossRef]
  8. S. Y. Teng, L. R. Liu, J. F. Zu, Z. Luan, and D. A. Liu, “Uniform theory of the Talbot effect with partially coherent light illumination,” J. Opt. Soc. Am. A 20, 1747–1754 (2003). [CrossRef]
  9. D. N. Sergio, F. Pietro, C. Giuseppe, F. Andrea, P. Giovanni, and G. Simonetta, “Talbot self-image effect in digital holography and its application to spectrometry,” Opt. Lett. 29, 104–106 (2004). [CrossRef]
  10. M. R. Dennis, N. I. Zheludev, and F. J. G. de Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692–9700 (2007). [CrossRef]
  11. D. S. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “A metallic phase with long-ranged orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984). [CrossRef]
  12. S. Papanikolaou, D. M. Dimiduk, W. Choi, J. P. Sethna, M. D. Uchic, C. F. Woodward, and S. Zapperi, “Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator,” Nature 490, 517–521 (2012). [CrossRef]
  13. Y. Yayon, M. Rappaport, V. Umansky, and I. Bar-Joseph, “Anisotropy and periodicity in the density distribution of electrons in a quantum well,” Phys. Rev. B 66, 033310 (2002). [CrossRef]
  14. B. Hou, G. Xu, W. Wen, and G. K. L. Wong, “Diffraction by an optical fractal grating,” Appl. Phys. Lett. 85, 6125–6127 (2004). [CrossRef]
  15. I. Dolev, M. Volodarsky, G. Porat, and A. Arie, “Multiple coupling of surface plasmons in quasi-periodic gratings,” Opt. Lett. 36, 1584–1586 (2011). [CrossRef]
  16. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasi-periodic hole arrays,” Opt. Express 16, 9222–9238 (2008). [CrossRef]
  17. Y. Bao, B. Zhang, Z. Wu, J. Si, M. Wang, R. Peng, X. Lu, J. Shao, Z. Li, X. Hao, and N. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal-featured aperture array,” Appl. Phys. Lett. 90, 251914 (2007). [CrossRef]
  18. G. Biener, Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Manipulation of polarization-dependent multivortices with quasi-periodic subwavelength structures,” Opt. Lett. 31, 1594–1596 (2006). [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 2001).
  20. S. Y. Teng, X. Y. Chen, T. J. Zhou, and C. F. Cheng, “Quasi-Talbot effect of a grating in the deep Fresnel diffraction region,” J. Opt. Soc. Am. A 24, 1656–1665 (2007). [CrossRef]
  21. S. Y. Teng, T. J. Zhou, and C. F. Cheng, “Influence of the size of the grating on Talbot effect,” Optik 119, 695–699 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited