OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5088–5096

Estimation of self-absorption effect on aluminum emission in the presence of different noble gases: comparison between thin and thick plasma emission

F. Rezaei, P. Karimi, and S. H. Tavassoli  »View Author Affiliations


Applied Optics, Vol. 52, Issue 21, pp. 5088-5096 (2013)
http://dx.doi.org/10.1364/AO.52.005088


View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Aluminum spectra in the noble gases of helium and argon at initial delay times after plasma formation are numerically calculated. Temporal behavior of plasma emissions up to 200 ns after laser irradiation is investigated. Plasma parameters are computed by coupling the thermal model of laser ablation, hydrodynamic of plasma expansion, and Saha–Eggert equations. A spectrum is constructed from the superposition of 13 strong lines of aluminum and several strong lines of ambient gases. Spectral radiations are superimposed on a continuous emission composed of bremsstrahlung and recombination radiation. The self-absorption effect on plasma radiation at 1 atm gas pressure is studied. In this paper, a comparison between thin and thick aluminum radiation is done. Furthermore, the self-absorption coefficient of each strong line at laser energies of 0.5, 0.7, 0.9, and 1.1GW/cm2 is estimated. Results show that at specific laser energy, the self-absorption effect in argon is more significant than in helium. For most of the spectral lines in both noble gases, the self-absorption coefficient will diminish with the delay time. As indicated with passing time, the line widths of the self-absorbed lines will rise. More intense continuous emissions are observed at higher wavelengths, and these radiations will be increased with laser energy.

© 2013 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: January 3, 2013
Revised Manuscript: June 9, 2013
Manuscript Accepted: June 17, 2013
Published: July 12, 2013

Citation
F. Rezaei, P. Karimi, and S. H. Tavassoli, "Estimation of self-absorption effect on aluminum emission in the presence of different noble gases: comparison between thin and thick plasma emission," Appl. Opt. 52, 5088-5096 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-21-5088


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Cowan and G. H. Dieke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948). [CrossRef]
  2. B. Atalay, R. Aydin, A. Demir, N. Kenar, and E. Kacar, “Simulation of Ni-like and Co-like X-rays emitted from laser produced tin plasmas,” Czech. J. Phys. 56, B430–B435 (2006). [CrossRef]
  3. M. Capitelli, A. Casavola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004). [CrossRef]
  4. A. Casavola, G. Colonna, and M. Capitelli, “Nonequilibrium conditions during a laser induced plasma expansion,” Appl. Surf. Sci. 208, 85–89 (2003). [CrossRef]
  5. A. Casavola, G. Colonna, and M. Capitelli,” Kinetic model of titanium laser induced plasma expansion in nitrogen environment,” Plasma Sources Sci. Technol. 18, 025027 (2009). [CrossRef]
  6. A. Casavola, G. De. Colonna, A. Giacomo, and M. Capitelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003). [CrossRef]
  7. A. R. Casavola, G. De. Colonna, A. De Giacomo, O. Pascale, and M. Capitelli, “Experimental and theoretical investigation of laser-induced plasma of a titanium target,” Appl. Opt. 42, 5963–5970 (2003). [CrossRef]
  8. G. Colonna, L. Pietanza, and G. D’Ammando, “Self-consistent collisional-radiative model for hydrogen atoms: atom–atom interaction and radiation transport,” Chem. Phys. 398, 37–45 (2012). [CrossRef]
  9. G. D’Ammando, L. Pietanza, G. Colonna, S. Longo, and M. Capitelli, “Modelling spectral properties of nonequilibrium atomic hydrogen plasma,” Spectrochim. Acta Part B 65, 120–129 (2010). [CrossRef]
  10. E. Ershov-Pavlov, K. Y. Katsalap, K. Stepanov, and Y. A. Stankevich, “Time-space distribution of laser-induced plasma parameters and its influence on emission spectra of the laser plumes,” Spectrochim. Acta Part B 63, 1024–1037 (2008). [CrossRef]
  11. D. Heading, J. Wark, G. Bennett, and R. Lee,” Simulations of spectra from dense aluminium plasmas,” J. Quant. Spectrosc. Radiat. Transfer. 54, 167–180 (1995). [CrossRef]
  12. O. Renner, P. Adámek, P. Angelo, E. Dalimier, E. Förster, E. Krousky, F. Rosmej, and R. Schott, “Spectral line decomposition and frequency shifts in Al Heα group emission from laser-produced plasma,” J. Quant. Spectrosc. Radiat. Transfer. 99, 523–536 (2006). [CrossRef]
  13. O. Renner, J. Limpouch, E. Krousky, I. Uschmann, and E. Förster, “Spectroscopic characterization of plasma densities of laser-irradiated Al foils,” J. Quant. Spectrosc. Radiat. Transfer 81, 385–394 (2003). [CrossRef]
  14. C. Trassy and A. Tazeem, “Simulation of atomic and ionic absorption and emission spectra for thermal plasma diagnostics: application to a volatilization study in a plasma jet,” Spectrochim. Acta Part B 54, 581–602 (1999). [CrossRef]
  15. M. Ribière, B. G. Chéron, and A. Bultel, “Self-absorbed lines analysis of a recombining laser induced aluminum plasma,” High Temp. Mater. Process. 12, 109–120 (2008). [CrossRef]
  16. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 339–353 (2002). [CrossRef]
  17. I. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta Part B 56, 1769–1785 (2001). [CrossRef]
  18. H. Y. Moon, K. H. Kathleen, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 702–713 (2009).
  19. F. Bredice, F. O. Borges, H. Sobral, M. Di Villagran-Muniz, H. O. Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta Part B 61, 1294–1303 (2006). [CrossRef]
  20. A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta Part B 60, 1573–1579 (2005). [CrossRef]
  21. L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79, 388–395 (2009). [CrossRef]
  22. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transfer. 75, 747–763 (2002). [CrossRef]
  23. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transfer. 77, 365–372 (2003). [CrossRef]
  24. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta Part B 62, 1287–1302 (2007). [CrossRef]
  25. A. M. El Sherbini, A. A. S. Al Amer, A. T. Hassan, and T. M. El Sherbini, “Spectrometric measurement of plasma parameters utilizing the target ambient gas O I & N I atomic lines in LIBS experiment,” Opt. Photon. J. 2, 286–293 (2012).
  26. J. Aguilera, J. Bengoechea, and C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta Part B 58, 221–237 (2003). [CrossRef]
  27. J. Aguiler and C. Aragón, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta Part B 63, 784–792 (2008). [CrossRef]
  28. C. Aragon, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta B 56, 619–628 (2001). [CrossRef]
  29. C. Aragon, F. Penalba, and J. Aguilera, “Curves of growth of neutral atom and ion lines emitted by a laser induced plasma,” Spectrochim. Acta Part B 60, 879–887 (2005). [CrossRef]
  30. R. O’Neill, “Algorithm AS 47: function minimization using a simplex procedure,” J. R. Soc. Stat. Ser. C 20, 338–345 (1971).
  31. J. B. Ahmed and J. Cowpe, “Experimental and theoretical investigation of a self-absorbed spectral line emitted from laser-induced plasmas,” Appl. Opt. 49, 3607–3612 (2010). [CrossRef]
  32. M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104, 053303 (2008). [CrossRef]
  33. F. Rezaei, M. Sharafkhani, and S. H. Tavassoli, “Numerical investigation of spatially resolved laser induced breakdown spectroscopy,” in Proc. Conf. 6th Euro-Mediterranean Symposiumon LIBS, Turkey2011.
  34. F. Rezaei and S. H. Tavassoli, “Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas,” Spectrochim. Acta B 78, 29–36 (2012). [CrossRef]
  35. F. Rezaei and S. H. Tavassoli, “Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma,” Phys. Plasmas 20, 013301 (2013). [CrossRef]
  36. A. Vertes, R. Dreyfus, and D. Platt, “Modeling the thermal-to-plasma transitions for Cu photoablation,” IBM J. Res. Dev. 38, 3–10 (1994). [CrossRef]
  37. S. Mehrabian, M. Aghaei, and S. H. Tavassoli, “Effect of background gas pressure and laser pulse intensity on laser induced plasma radiation of copper samples,” Phys. Plasmas 17, 043301 (2010). [CrossRef]
  38. A. V. Gusarov and I. Smurov, “Thermal model of nanosecond pulsed laser ablation: analysis of energy and mass transfer,” J. Appl. Phys. 97, 0143071 (2005).
  39. A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta Part B 58, 1867–1893 (2003). [CrossRef]
  40. G. D’Ammando, G. Colonna, L. D. Pietanza, and M. Capitelli, “Computation of thermodynamic plasma properties: a simplified approach,” Spectrochim. Acta Part B 65, 603–615 (2010). [CrossRef]
  41. Y. Ralchenko, “NIST atomic spectra database,” Memorie della Societa Astronomica Italiana Supplementi 8, 96 (2005).
  42. M. Elitzur and A. A. Ramos, “A new exact method for line radiative transfer,” Mon. Not. R. Astron. Soc. 365, 779 (2006). [CrossRef]
  43. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).
  44. W. T. Silfvast, Laser Fundamentals (Cambridge University, 1996) p. 105.
  45. V. Milosavljevic and G. Poparic, “Atomic spectral line free parameter deconvolution procedure,” Phys. Rev. E 63, 036404 (2001). [CrossRef]
  46. I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta Part B 54, 1207–1217 (1999). [CrossRef]
  47. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  48. A. Alonso-Medina, “Experimental determination of the Stark widths of Pb I spectral lines in a laser-induced plasma,” Spectrochim. Acta Part B. 63, 598–602 (2008). [CrossRef]
  49. W. Lochte-Holtgreven, Plasma Diagnostics (Wiley Interscience, 1968).
  50. A. N. Cox, Allen’s Astrophysical Quantities (Springer, 1999).
  51. D. Diver, A Plasma Formulary for Physics, Technology, and Astrophysics (Wiley-VCH, 2011).
  52. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), p. 424.
  53. A. Bogaerts, Z. Chen, and D. Bleiner, “Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments,” J. Anal. At. Spectrom. 21, 384–395 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited