OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5165–5170

Flexible silver-coated hollow fibers for remote Raman spectroscopic measurements

Bing-Hong Liu and Yi-Wei Shi  »View Author Affiliations


Applied Optics, Vol. 52, Issue 21, pp. 5165-5170 (2013)
http://dx.doi.org/10.1364/AO.52.005165


View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Raman remote spectroscopy system was established by using flexible hollow fibers (HFs) as laser excitation fiber and signal collection fiber. Experimental evaluations with various optical fiber combinations were carried out. Experiments were conducted by using silver-coated HFs as both remote transmission fiber and sample cells for liquid sample detection. Good linearity for concentration detection of liquid was obtained with clean background and signal enhancement. Theoretical analysis was carried out to optimize the length of the liquid cell. Measured data show good agreement with the simulation result. HF has shown potentiality in applications for remote and noninvasive Raman detection.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: March 18, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 9, 2013
Published: July 15, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Bing-Hong Liu and Yi-Wei Shi, "Flexible silver-coated hollow fibers for remote Raman spectroscopic measurements," Appl. Opt. 52, 5165-5170 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-21-5165


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Munro, V. Pajcini, and S. A. Asher, “Dielectric stack filters for ex situ and in situ UV optical-fiber probe Raman spectroscopic measurements,” Appl. Spectrosc. 51, 1722–1729 (1997). [CrossRef]
  2. S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984). [CrossRef]
  3. H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000). [CrossRef]
  4. B. J. Marquardt, D. N. Stratis, D. A. Cremers, and S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998). [CrossRef]
  5. Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt. 44, 4722–4732 (2005). [CrossRef]
  6. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: tests of single-fiber lensed and flat and bevel-tip multi-fiber probes,” Appl. Spectrosc. 50, 849–860 (1996). [CrossRef]
  7. Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005). [CrossRef]
  8. E. Yokoyama, S. Kakino, and Y. Matsuura, “Raman imaging of carious lesions using a hollow optical fiber probe,” Appl. Opt. 47, 4227–4230 (2008). [CrossRef]
  9. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31, 1911–1913 (2006). [CrossRef]
  10. W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010). [CrossRef]
  11. Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009). [CrossRef]
  12. Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007). [CrossRef]
  13. Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011). [CrossRef]
  14. R. Altkorn, M. D. Malinsky, R. P. V. Duyne, and I. Koev, “Intensity considerations in liquid core optical fiber Raman spectroscopy,” Appl. Spectrosc. 55, 373–381 (2001). [CrossRef]
  15. F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” Appl. Phys. 109, 113104 (2011).
  16. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45, 6736–6740 (2006). [CrossRef]
  17. G. Penel, E. C. Pottier, and G. Leroy, “Raman investigation of calcium carbonate bone substitutes and related biomaterials,” Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 45, 56–59 (2003).
  18. J. C. R. Cabello, J. M. Monge, J. M. Lagarón, and J. M. Pastor, “Determination of the content of extended chain segments in isotropic and uniaxially stretched polyethylenes by Raman spectroscopy,” Macromol. Chem. Phys. 199, 2767–2776 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited