OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5178–5183

Improved algorithm for elemental analysis by laser-induced breakdown spectroscopy

Prashant Kumar, K. P. Subramanian, Ajai Kumar, and R. K. Singh  »View Author Affiliations

Applied Optics, Vol. 52, Issue 21, pp. 5178-5183 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a calibration-free algorithm for retrieval of elemental concentrations using laser-induced breakdown spectroscopy. This is a simple and improved version of other ratio-based algorithms as it needs only one trial parameter to estimate all other concentrations. The present algorithm has been used to estimate the composition of a brass sample, and the results agree within 1% with electron probe microanalyzer measurements.

© 2013 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: March 11, 2013
Revised Manuscript: June 13, 2013
Manuscript Accepted: June 17, 2013
Published: July 15, 2013

Prashant Kumar, K. P. Subramanian, Ajai Kumar, and R. K. Singh, "Improved algorithm for elemental analysis by laser-induced breakdown spectroscopy," Appl. Opt. 52, 5178-5183 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000). [CrossRef]
  2. J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin, and J. Winefordner, “Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS),” Proc. SPIE 5778, 657–666 (2005). [CrossRef]
  3. F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011). [CrossRef]
  4. U. S. Sathyam, A. Shearin, and S. A. Prahl, “Investigations of basic ablation phenomena during laser thrombolysis,” Proc. SPIE 2970, 19–27 (1997). [CrossRef]
  5. A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, “Laser-induced breakdown spectroscopy in industrial and security applications,” Appl. Opt. 49, C132–C142 (2010). [CrossRef]
  6. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007). [CrossRef]
  7. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010). [CrossRef]
  8. B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of the ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005). [CrossRef]
  9. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Opt. 53, 960–964 (1999).
  10. J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium-lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001). [CrossRef]
  11. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995). [CrossRef]
  12. C. J. Sansonetti, M. L. Salit, and J. Reader, “Wavelengths of spectral lines in mercury pencil lamps,” Appl. Opt. 35, 74–77 (1996). [CrossRef]
  13. “Kurucz database,” http://www.pmp.uni-hannover.de.
  14. S. M. Abrarov, B. M. Quine, and R. K. Jagpal, “Rapidly convergent series for high-accuracy calculation of the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 111, 372–375 (2010). [CrossRef]
  15. R. W. P. McWhirter, “Spectral intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, 1965), pp. 201–264.
  16. G. Cristoforetti, A. De Giacomo, M. DellÁglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited