OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5194–5200

High etendue UV camera for simultaneous four-color imaging on a single detector

Brian A. Hicks, Meredith E. Danowski, Jason F. Martel, and Timothy A. Cook  »View Author Affiliations


Applied Optics, Vol. 52, Issue 21, pp. 5194-5200 (2013)
http://dx.doi.org/10.1364/AO.52.005194


View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a high etendue (0.12cm2sr) camera that, without moving parts, simultaneously images four ultraviolet bands centered at 140, 175, 215, and 255 nm on a single detector into a minimum of 7500 resolution elements. In addition to being an efficient way to make color photometric measurements of a static scene, the camera described here enables detection of spatial and temporal information that can be used to reveal energy dependent physical phenomena to complement the capability of other instruments ranging in complexity from filter wheels to integral field spectrographs.

© 2013 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(220.2740) Optical design and fabrication : Geometric optical design
(350.1260) Other areas of optics : Astronomical optics
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Imaging Systems

History
Original Manuscript: April 4, 2013
Manuscript Accepted: June 6, 2013
Published: July 17, 2013

Citation
Brian A. Hicks, Meredith E. Danowski, Jason F. Martel, and Timothy A. Cook, "High etendue UV camera for simultaneous four-color imaging on a single detector," Appl. Opt. 52, 5194-5200 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-21-5194


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Johnson and W. Morgan, “Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas,” Astrophys. J. 117, 313 (1953). [CrossRef]
  2. A. Cousins, “VRI photometry of nearby stars,” S. Afr. Ast. Obs. Circ. 1, 166–171 (1980).
  3. R. Windhorst, S. Cohen, N. Hathi, P. McCarthy, R. Ryan, H. Yan, I. Baldry, S. Driver, J. Frogel, D. Hill, L. Kelvin, A. Koekemoer, M. Mechtley, R. O'Connell, A. Robotham, M. Rutkowski, M. Seibert, A. Straughn, R. Tuffs, B. Balick, H. Bond, H. Bushouse, D. Calzetti, M. Crockett, M. Disney, M. Dopita, D. Hall, J. Holtzman, S. Kaviraj, R. Kimble, J. MacKenty, M. Mutchler, F. Paresce, A. Saha, J. Silk, J. Trauger, A. Walker, B. Whitmore, and E. Young, “The Hubble Space Telescope wide field camera 3 early release science data: panchromatic faint object counts for 0.2–2 μm wavelength,” Astrophys. J. Suppl. Ser. 193, 27 (2011).
  4. E. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “DWEL: a dual-wavelength echidna lidar for ground-based forest scanning,” IEEE Geosci. Remote Sens. Lett.4998–5001 (2012).
  5. S. Newman, L. Clarisse, D. Hurtmans, F. Marenco, B. Johnson, K. Turnbull, S. Havemann, A. Baran, D. O’Sullivan, and J. Haywood, “A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and satellite radiative measurements,” J. Geophys. Res. Atmos.117, D00U13 (2012).
  6. L. Gao, R. Kester, N. Hagen, and T. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010). [CrossRef]
  7. V. Studer, J. Bobin, M. Chahid, H. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. USA 109, E1679–E1687 (2012).
  8. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A 106, 309–323 (2012). [CrossRef]
  9. P. Lagueux, E. Puckrin, C. Turcotte, M. Gagnon, J. Bastedo, V. Farley, and M. Chamberland, “Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications,” Proc. SPIE 8542, 84226 (2012). [CrossRef]
  10. D. Kittle, D. Marks, and D. Brady, “Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager,” Opt. Eng. 51, 071403 (2012). [CrossRef]
  11. K. Hirakawa and P. Wolfe, “Second-generation color filter array and demosaicking designs,” Proc. SPIE 6822, 68221P (2008). [CrossRef]
  12. T. Cook, B. Hicks, P. Jung, and S. Chakrabarti, “Far-ultraviolet astronomical narrowband imaging,” Appl. Opt. 48, 1936–1942 (2009). [CrossRef]
  13. B. Fleming, S. McCandliss, M. Kaiser, J. Kruk, P. Feldman, A. Kutyrev, M. Li, D. Rapchun, E. Lyness, S. Moseley, O. Siegmund, J. Vallerga, and A. Martin, “Fabrication and calibration of FORTIS,” Proc. SPIE 8145, 81450B (2011). [CrossRef]
  14. M. Li, A. Brown, A. Kutyrev, H. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE 7594, 75940N (2010). [CrossRef]
  15. M. Danowski, Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, Massachusetts 02215 USA and T. Cook, B. Hicks, J. Martel, and S. Chakrabarti are preparing a manuscript to be called, “IMAGER: a sounding rocket mission for the study of ultraviolet dust extinction.”
  16. M. Sirianni, M. Jee, N. Benítez, J. Blakeslee, A. Martel, G. Meurer, M. Clampin, G. De Marchi, H. Ford, R. Gilliland, G. Hartig, G. Illingworth, J. Mack, and W. McCann, “The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys,” Publ. Astron. Soc. Pac. 117, 1049–1112 (2005).
  17. D. Martin, J. Fanson, D. Schiminovich, P. Morrissey, P. Friedman, T. Barlow, T. Conrow, R. Grange, P. Jelinsky, B. Milliard, O. Siegmund, L. Bianchi, Y. Byun, J. Donas, K. Forster, T. Heckman, Y. Lee, B. Madore, R. Malina, S. Neff, R. Rich, T. Small, F. Surber, A. Szalay, B. Welsh, and T. Wyder, “The galaxy evolution explorer: a space ultraviolet survey mission,” Astrophys. J. Lett. 619, L1–L6 (2005). [CrossRef]
  18. N. Lewis, T. Cook, K. Wilton, S. Chakrabarti, K. France, and K. Gordon, “Far-ultraviolet dust Albedo measurements in the upper Scorpius cloud using the SPINR sounding rocket experiment,” Astrophys. J. 706, 306–318 (2009). [CrossRef]
  19. O. Siegmund, M. Lampton, J. Bixler, S. Chakrabarti, and J. Vallerga, “Wedge and strip image readout systems for photon-counting detectors in space astronomy,” J Opt. Soc. Am. A 3, 2139–2145 (1986). [CrossRef]
  20. E. Wilkinson, S. Béland, S. Penton, J. Vallerga, J. McPhate, and D. Sahnow, “Algorithms for correcting geometric distortions in delay-line anodes,” Rev. Sci. Instrum. 74, 38–46 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited