OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5208–5215

Temperature characteristics of the birefringence properties of filled side-hole fibers

Johan Jason, Patrik Rugeland, Oleksandr Tarasenko, Walter Margulis, and Hans-Erik Nilsson  »View Author Affiliations


Applied Optics, Vol. 52, Issue 21, pp. 5208-5215 (2013)
http://dx.doi.org/10.1364/AO.52.005208


View Full Text Article

Enhanced HTML    Acrobat PDF (753 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature characteristics of the birefringence of side-hole fibers filled with liquids or metal are investigated, aiming at providing a basis for on/off temperature sensing. Short pieces of fiber are filled and the change in birefringence is registered using measurements in reflective mode of the transmitted power through a linear polarizer at 1550 nm. The rapid change in the birefringence behavior of the fiber at the temperature of the phase transition of the filler substance is shown, and from the measurement data the phase transition temperatures can be determined as well as an estimation of the birefringence change with temperature. The experimental results are supported by numerical simulations.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 3, 2013
Manuscript Accepted: May 31, 2013
Published: July 17, 2013

Citation
Johan Jason, Patrik Rugeland, Oleksandr Tarasenko, Walter Margulis, and Hans-Erik Nilsson, "Temperature characteristics of the birefringence properties of filled side-hole fibers," Appl. Opt. 52, 5208-5215 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-21-5208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Jaaskelainen, “Advances in the use of optical fibers sensors for oil reservoir monitoring,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, Washington, DC, 2006), paper TuB1.
  2. M. Nikles, B. H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004). [CrossRef]
  3. A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12, 885–892 (2012). [CrossRef]
  4. T. Hara, K. Terashima, H. Takashima, H. Suzuki, Y. Nakura, Y. Makino, S. Yamamoto, and Y. Nakamura, “Development of long range optical fiber sensors for composite submarine power cable maintenance,” IEEE Trans. Power Deliv. 14, 23–30 (1999). [CrossRef]
  5. ULRICA fiber-optic distributed heat detection system, product description, available on-line: http://www.fiberson.se .
  6. A. B. Lobo-Riberio, N. F. Eira, J. M. Sousa, P. T. Guerreiro, and J. R. Salcedo, “Multipoint fiber-optic hot-spot sensing network integrated into high power transformer for continuous monitoring,” IEEE Sens. J. 8, 1264–1267 (2008). [CrossRef]
  7. J. Jason, F. Sunnegårdh, N. Paulsson, J. Söderberg, J. Hellström, and H.-E. Nilsson, “Fiber-optic temperature monitoring in pulp production,” Trans. IWCS 1, 7–16 (2008).
  8. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985). [CrossRef]
  9. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990). [CrossRef]
  10. C. E. Lee and H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991). [CrossRef]
  11. H. M. Xie, Ph. Dabkiewicz, and R. Ulrich, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11, 333–335 (1986). [CrossRef]
  12. S. Tanaka, K. Yoshida, S. Kinugasa, and Y. Ohtsuka, “Birefringent side-hole fiber for use in strain sensor,” Opt. Rev. 4, A92–A95 (1997). [CrossRef]
  13. W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, and O. Tarasenko, “High-speed electrical switching in optical fibers,” Appl. Opt. 50, E65–E75 (2011). [CrossRef]
  14. S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009). [CrossRef]
  15. B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. Kim, and W.-T. Han, “Highly sensitive temperature sensor based on the side-hole optical fiber filled with indium,” ECOC-2011 Technical Digest (OSA, 2011), We.10.P1.
  16. B. H. Kim, S. H. Lee, D. H. Son, T.-J. Ahn, S. E. Kim, and W.-T. Han, “Optical properties of the fiber-optic temperature sensor based on the side-hole fiber filled with indium,” Appl. Opt. 52, 666–673 (2013). [CrossRef]
  17. J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 857–859 (1998). [CrossRef]
  18. A. J. Rogers, S. V. Shatalin, and S. E. Kanellopoulos, “Distributed measurement of fluid pressure via optical-fibre backscatter polarimetry,” Proc. SPIE 5855, 230–233 (2005). [CrossRef]
  19. J. Wójcik, P. Mergo, and B. Janoszczyk, “Analysis of sensitivity of side-hole optical fibers to pressure and temperature by finite elements method,” Proc. SPIE 3054, 84–93 (1997). [CrossRef]
  20. D. S. Moon, B. H. Kim, A. Lin, G. Sun, Y.-G. Han, W.-T. Han, and Y. Chung, “The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber,” Opt. Express 15, 7962–7967 (2007). [CrossRef]
  21. “Stress-optical effects in a photonic waveguide,” Model documentation, COMSOL Inc., 2012.
  22. “Stress-optical effects with generalized plane strain,” Model documentation, COMSOL Inc., 2012.
  23. M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach–Zehnder interferometer for electro-optic switching,” Opt. Lett. 27, 1643–1645 (2002). [CrossRef]
  24. Indium and gold/tin solders for photonic packaging, data sheet available on-line: http:/www.aimspecialty.com .
  25. D. D. Ebbing and S. D. Gammon, General Chemistry, 9th ed. (Houghton Mifflin, 2009), pp. 500–501, 508.
  26. The Heat Transfer Module User’s Guide, 4th ed. (COMSOL Inc., 2012).
  27. The Structural Mechanics Module User’s Guide, 4th ed. (COMSOL Inc., 2012).
  28. C. Zeringue and G. T. Moore, “Model and simulation of a tunable birefringent fiber using capillaries filled with liquid ethanol for magnetic quasi-phase matching in-fiber isolator,” Adv. Optoelectron., 586986 (2010).
  29. N. V. Churaev, M. J. Setzer, O. A. Kiseleva, and V. D. Sobolev, “On the thermodynamic equilibrium between ice and electrolyte solutions in the conditions of confined geometry,” Colloids Surf. A 300, 327–334 (2007). [CrossRef]
  30. M. Wuilpart and M. Tur, “Polarization effects in optical fibres,” in Advanced Fiber Optics, L. Thevenaz, ed. (CRC Press, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited