OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5297–5302

High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance

Na-na Chen, Jian Liang, and Li-yong Ren  »View Author Affiliations

Applied Optics, Vol. 52, Issue 21, pp. 5297-5302 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (706 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new kind of polymer porous fiber with elliptical air-holes is designed for obtaining high birefringence in the terahertz (THz) frequency range in this paper. Using the finite element method, the properties of this kind of fiber are simulated in detail including the single-mode propagation condition, the birefringence, and the loss. Theoretical results indicate that the single-mode THz wave in the frequency range from 0.73 to 1.22 THz can be guided in the fiber; the birefringence can be enhanced by rotating the major axis of the elliptical air-hole and there exists an optimal rotating angle at 30°. At this optimal angle a birefringence as high as 0.0445 can be obtained in a wide frequency range. Low-loss THz guidance can be achieved owing to the effective reduction of the material absorption in such a porous fiber. This research is useful for polarization-maintaining THz-wave guidance.

© 2013 Optical Society of America

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(160.5470) Materials : Polymers
(040.2235) Detectors : Far infrared or terahertz
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 28, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: June 28, 2013
Published: July 19, 2013

Na-na Chen, Jian Liang, and Li-yong Ren, "High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance," Appl. Opt. 52, 5297-5302 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21, 2011–2013 (1996). [CrossRef]
  2. Q. Chen, Z. P. Jiang, G. X. Xu, and X. C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000). [CrossRef]
  3. Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008). [CrossRef]
  4. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16, 4094–4105 (2008). [CrossRef]
  5. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008). [CrossRef]
  6. J. Q. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29, 1617–1619 (2004). [CrossRef]
  7. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [CrossRef]
  8. T. I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  9. J. A. Harrington, R. George, and P. Pedersen, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [CrossRef]
  10. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007). [CrossRef]
  11. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008). [CrossRef]
  12. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008). [CrossRef]
  13. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007). [CrossRef]
  14. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011). [CrossRef]
  15. J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013). [CrossRef]
  16. H. L. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20, 29507–29517 (2012). [CrossRef]
  17. S. Atakaramians, S. A. Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach for low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008). [CrossRef]
  18. H. B. Chen, D. R. Chen, and Z. Hong, “Squeezed lattice elliptical-hole terahertz fiber with high birefringence,” Appl. Opt. 48, 3943–3947 (2009). [CrossRef]
  19. L. Jing and J. Q. Yao, “Single mode condition and power fraction of air-cladding of total refractive guided porous polymer terahertz fibers,” Chin. Phys. Lett. 28, 084202 (2011). [CrossRef]
  20. X. G. Jiang, D. R. Chen, and G. F. Hu, “Suspended hollow core fiber for terahertz wave guiding,” Appl. Opt. 52, 770–774 (2013). [CrossRef]
  21. S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20, 1385–1391 (2012). [CrossRef]
  22. D. R. Chen and L. F. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defects,” J. Lightwave Technol. 25, 2700–2705 (2007). [CrossRef]
  23. Y. Yue, G. Y. Kai, T. T. Sun, Z. Wang, L. Jin, Y. F. Lu, C. S. Zhang, J. G. Liu, Y. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32, 469–471 (2007). [CrossRef]
  24. S. Atakaramians, S. A. Vahid, H. E. Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009). [CrossRef]
  25. S. Atakaramians, S. A. Vahid, B. M. Fisher, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009). [CrossRef]
  26. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009). [CrossRef]
  27. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003). [CrossRef]
  28. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited