OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 21 — Jul. 20, 2013
  • pp: 5312–5317

Reconstruction of laser beam wavefronts based on mode analysis

Christian Schulze, Angela Dudley, Daniel Flamm, Michael Duparré, and Andrew Forbes  »View Author Affiliations

Applied Optics, Vol. 52, Issue 21, pp. 5312-5317 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the reconstruction of a laser beam wavefront from its mode spectrum and investigate in detail the impact of distinct aberrations on the mode composition. The measurement principle is presented on a Gaussian beam that is intentionally distorted by displaying defined aberrations on a spatial light modulator. The comparison of reconstructed and programmed wavefront aberrations yields excellent agreement, proving the high measurement fidelity.

© 2013 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(030.4070) Coherence and statistical optics : Modes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(140.3295) Lasers and laser optics : Laser beam characterization
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 17, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: June 26, 2013
Published: July 19, 2013

Christian Schulze, Angela Dudley, Daniel Flamm, Michael Duparré, and Andrew Forbes, "Reconstruction of laser beam wavefronts based on mode analysis," Appl. Opt. 52, 5312-5317 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. W. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2434–2441 (1973). [CrossRef]
  2. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef]
  3. F. Roddier, M. Séchaud, G. Rousset, P.-Y. Madec, M. Northcott, J.-L. Beuzit, F. Rigaut, J. Beckers, D. Sandler, P. Léna, and O. Lai, Adaptive Optics in Astronomy (Cambridge University, 1999).
  4. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  5. M. A. A. Neil, R. Juakaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000). [CrossRef]
  6. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef]
  7. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010). [CrossRef]
  8. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  9. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25, 225–230 (2008). [CrossRef]
  10. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999). [CrossRef]
  11. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14, 518–526 (2006). [CrossRef]
  12. M. P. Rimmer and J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear,” Appl. Opt. 14, 142–150 (1975).
  13. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005). [CrossRef]
  14. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992). [CrossRef]
  15. R. Borrego-Varillas, C. Romero, J. R. V. de Aldana, J. M. Bueno, and L. Roso, “Wavefront retrieval of amplified femtosecond beams by second-harmonic generation,” Opt. Express 19, 22851–22862 (2011). [CrossRef]
  16. G. P. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48, 085801 (2009). [CrossRef]
  17. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express 20, 19714–19725 (2012). [CrossRef]
  18. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation (Springer, 2005).
  19. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17, 9347–9356 (2009). [CrossRef]
  20. ISO, “Lasers and laser-related equipment—Test methods for determination of the shape of a laser beam wavefront—Part 1: Terminology and fundamental aspects,” , 2003.
  21. C. Schulze, S. Ngcobo, M. Duparré, and A. Forbes, “Modal decomposition without a priori scale information,” Opt. Express 20, 27866–27873 (2012). [CrossRef]
  22. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré, “Mode analysis with a spatial light modulator as a correlation filter,” Opt. Lett. 37, 2478–2480 (2012). [CrossRef]
  23. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24, 3500–3507 (2007). [CrossRef]
  24. W.-H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1991).
  26. J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” Am. Statist. 42, 59–66 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited