OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5327–5341

Ultralightweight deformable mirrors

Keith Patterson and Sergio Pellegrino  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. 5327-5341 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a concept for ultralightweight deformable mirrors, based on a thin substrate of optical surface quality, coated with continuous active layers that provide separate modes of actuation at different length scales. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits microfabrication technologies to provide tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10 cm diameter mirrors with an areal density of 0.6kg/m2 have been designed, built, and tested to measure their shape-correction performance and verify the finite-element models used for design. The low-cost manufacturing scheme involves low-temperature processing steps (below 140°C) to minimize residual stresses, does not require precision photolithography, and is therefore scalable to larger diameters depending on application requirements.

© 2013 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(220.4610) Optical design and fabrication : Optical fabrication
(230.2090) Optical devices : Electro-optical devices
(230.4040) Optical devices : Mirrors
(230.4170) Optical devices : Multilayers
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Devices

Original Manuscript: April 25, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: July 1, 2013
Published: July 22, 2013

Keith Patterson and Sergio Pellegrino, "Ultralightweight deformable mirrors," Appl. Opt. 52, 5327-5341 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. P. Stahl, “Design study of 8 meter monolithic mirror UV/optical space telescope,” Proc. SPIE 7010, 701022 (2008). [CrossRef]
  2. J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. McCaughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smnith, G. Sonneborn, M. Staivelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb space telescope,” Space Sci. Rev. 123485–606 (2006). [CrossRef]
  3. C. M. Mountain, “The future of ELTS (Extremely Large Telescopes), a personal view,” Proc. SPIE 5382, 763–770 (2004). [CrossRef]
  4. J. B. Breckinridge, J. Dooley, M. Ortiz, and S. Pellegrino, “Large space apertures (LSA) study report” (Keck Institute of Space Studies, 2009).
  5. J. G. Katz, “Estimation and control of flexible space structures for autonomous on-orbit assembly,” M.S. thesis (MIT, 2009).
  6. M. C. Natori and K. Ukegawa, “Concept of self-assembly of space structure systems using autonomous modules,” in 54th International Astronautical Congress of the International Astronautical Federation (American Institute of Aeronautics and Astronautics, 2003), paper IAC-03-U.1.01.
  7. L. P. Rodgers, “Concepts and technology development for the autonomous assembly and reconfiguration of modular space systems,” M.S. thesis (MIT, 2005).
  8. C. Underwood and S. Pellegrino, “Autonomous assembly of a reconfigurable space telescope (AAReST) for astronomy and Earth observation,” presented at 8th IAA Symposium on Small Satellites for Earth Observation, Berlin, 4–8 April2011.
  9. G. Hickey, T. Barbee, M. Ealey, and D. Redding, “Actuated hybrid mirrors for space telescopes,” Proc. SPIE 7731, 773120 (2010). [CrossRef]
  10. K. Patterson and S. Pellegrino, “Shape correction of thin mirrors,” presented at 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, 4–7 April2011.
  11. K. Patterson, N. Yamamoto, and S. Pellegrino, “Thin deformable mirrors for a reconfigurable space aperture” in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (American Institute of Aeronautics and Astronautics, 2012), paper AIAA-2012-1668.
  12. A. Norton, J. W. Evans, D. Gavel, D. Dillon, D. Palmer, B. Macintosh, K. Morzinski, and S. Cornelissen, “Preliminary characterization of Boston Micromachines’ 4096-actuator deformable mirror,” Proc. SPIE 7209, 72090I (2009). [CrossRef]
  13. A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50 mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE 5490, 580–585 (2004). [CrossRef]
  14. E. H. Yang, Y. Hishinuma, J.-G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006). [CrossRef]
  15. T. Bruno, “Deformable mirrors,” Northrop Grumman, accessed 11Jan.2013, .
  16. P. Salinari, C. Del Vecchio, and V. Biliotti, “A study of an adaptive secondary mirror,” in Proceedings of the ICO-16 (International Commission for Optics) Satellite Conference on Active and Adaptive Optics, Vol. 48 of European Southern Observatory Conference and Workshop Proceedings (European Southern Observatory, 1994), p. 247.
  17. J. Lindler and E. Flint, “Robustness of thin film shells with discrete boundary actuation,” in 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (American Institute of Aeronautics and Astronautics, 2006), paper AIAA 2006-1904.
  18. M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013). [CrossRef]
  19. E. Steinhaus and S. Lipson, “Bimorph piezoelectric flexible mirror,” J. Opt. Soc. Am. 69, 478–481 (1979).
  20. T. Sato, H. Ishida, and O. Ikeda, “Adaptive PVDF piezoelectric deformable mirror system,” Appl. Opt. 19, 1430–1434 (1980). [CrossRef]
  21. C. P. Kuo, “A deformable mirror concept for adaptive optics in space,” Proc. SPIE 1542, 420–433 (1991). [CrossRef]
  22. Q. Chen, D. Natale, B. Neese, K. Ren, M. Lin, Q. M. Zhang, M. Pattom, K. W. Wang, H. Fang, and E. Im, “Piezoelectric polymers actuators for precise shape control of large scale space antennas,” Proc. SPIE 6524, 65241P (2007).
  23. D. D. Pearson, J. L. Cavaco, and J. Roche, “Multichannel, surface parallel, zonal transducer system,” U.S. patent7,683,524 B2 (March23, 2010).
  24. J. Pearson, J. Moore, and H. Fang, “Large and high precision inflatable membrane reflector,” in 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (American Institute of Aeronautics and Astronautics, 2010), paper AIAA-2010-2500.
  25. R. Bastaits, G. Rodrigues, P. Jetteur, P. Hagedorn, and A. Preumont, “Multi-layer adaptive thin shells for future space telescopes,” Smart Mater. Struct. 21, 064004 (2012). [CrossRef]
  26. B. de Blonk, J. Moore, B. Patrick, and E. Flint, “Membrane mirrors in space telescopes,” in Recent Advances in Gossamer Spacecraft, C. Jenkins, ed. (American Institute of Aeronautics and Astronautics, 2006), pp. 45–108.
  27. J. E. Huber, N. A. Fleck, and M. F. Ashby, “The selection of mechanical actuators based on performance indices,” Proc. R. Soc. London 453, 2185–2205 (1997). [CrossRef]
  28. R. A. Kellogg and A. B. Flatau, “Blocked force investigation of a Terfenol-D transducer,” Proc. SPIE 3668, 184–195 (1999). [CrossRef]
  29. W. K. Wilkie, R. G. Bryant, J. W. High, R. L. Fox, R. F. Hellbaum, A. Jalink Jr., B. D. Little, and P. H. Mirick, “Low-cost piezocomposite actuator for structural control applications,” Proc. SPIE 3991, 323–334 (2000). [CrossRef]
  30. V. Cotroneo, W. N. Davis, V. Marquez, P. B. Reid, D. A. Schwartz, R. L. Johnson-Wilke, S. E. Trolier-McKinstry, and R. H. T. Wilke, “Adjustable grazing incidence x-ray optics based on thin PZT films,” Proc. SPIE 8503, 850309 (2012). [CrossRef]
  31. T. R. Dargaville, M. C. Celina, J. M. Elliott, P. M. Chaplya, G. D. Jones, D. M. Mowery, R. A. Assink, R. L. Clough, and J. W. Martin, “Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts,” (Sandia National Laboratories, 2005).
  32. M. Horányi, V. Hoxie, D. James, A. Poppe, C. Bryant, B. Grogan, B. Lamprecht, J. Mack, F. Bagenal, S. Batiste, N. Bunch, T. Chanthawanich, F. Christensen, M. Colgan, T. Dunn, G. Drake, A. Fernandez, T. Finley, G. Holland, A. Jenkins, C. Krauss, E. Krauss, O. Krauss, M. Lankton, C. Mitchell, M. Neeland, T. Reese, K. Rash, G. Tate, C. Vaudrin, and J. Westfall, “The Student Dust Counter on the New Horizons Mission,” Space Sci. Rev. 140, 387–402 (2008). [CrossRef]
  33. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909). [CrossRef]
  34. L. B. Freund, “Substrate curvature due to thin film mismatch strain in the nonlinear deformation range,” J. Mech. Phys. Solids 48, 1159–1174 (2000). [CrossRef]
  35. L. B. Freund and S. Suresh, Thin Film Materials, Stress, Defect Deformation and Surface Evolution (Cambridge University, 2003).
  36. M. Born and E. Wolf, Principles of Optics (Pergamon, 1989).
  37. W. W. Zhang, “Manufacture of mirror glass substrates for the NUSTAR mission,” Proc. SPIE. 7437, 74370N (2009). [CrossRef]
  38. Y. Ezoe, T. Shirata, I. Mitsuishi, M. Ishida, K. Mitsuda, K. Morishita, and K. Nakajima, “Shaped silicon wafers obtained by hot plastic deformation: performance evaluation for future astronomical x-ray telescopes,” Appl. Opt. 48, 3830–3838 (2009). [CrossRef]
  39. P. Bely, The Design and Construction of Large Optical Telescopes (Springer, 2003).
  40. R. Klein, Concrete and Abstract Voronoi Diagrams (Springer-Verlag, 1987).
  41. H. Song, A. Simonov, and G. Vdovin, “Multiplexing control of a multichannel piezoelectric deformable mirror,” Proc. SPIE 6018, 60181F (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited