OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5371–5375

Polarization characteristics of He–Ne laser with different directions of polarized feedback

Yun Wu, Yidong Tan, Shulian Zhang, Zhaoli Zeng, and Yan Li  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. 5371-5375 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarizer is placed in an external feedback cavity to form polarized optical feedback. The effect of the different directions of polarized optical feedback on laser polarization characteristics (LPCs) is investigated experimentally and theoretically. The angle between the optical axis of the polarizer and the laser polarization is changed from 0° to 90°. It is found that LPCs vary greatly under different directions of polarized optical feedback. The angle range can be divided into five zones (two flipping zones, -polarization zone, bistable zone, and -polarization zone) according to the different LPCs. When the angle is in the range of the -polarization zone (-polarization zone), the laser outputs -polarization (-polarization). Thus, one can choose either -polarization or -polarization by properly aligning the axis of the polarizer.

© 2013 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(260.5430) Physical optics : Polarization

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 3, 2013
Revised Manuscript: July 2, 2013
Manuscript Accepted: July 2, 2013
Published: July 24, 2013

Yun Wu, Yidong Tan, Shulian Zhang, Zhaoli Zeng, and Yan Li, "Polarization characteristics of He–Ne laser with different directions of polarized feedback," Appl. Opt. 52, 5371-5375 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. X. Liu, M. Liu, and S. L. Zhang, “Method for the measurement of phase retardation of any wave plate with high precision,” Appl. Opt. 47, 5562–5569 (2008). [CrossRef]
  2. K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004). [CrossRef]
  3. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003). [CrossRef]
  4. B. M. Holmes, M. A. Naeem, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “A semiconductor laser with monolithically integrated dynamic polarization control,” Opt. Express 20, 20545–20550 (2012). [CrossRef]
  5. J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966). [CrossRef]
  6. A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984). [CrossRef]
  7. G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992). [CrossRef]
  8. G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985). [CrossRef]
  9. P. Paddon, E. Sjerve, A. D. May, M. Bourouis, and G. Stéphan, “Polarization modes in a quasi-isotropic laser: a general anisotropy model with applications,” J. Opt. Soc. Am. B 9, 574–589 (1992). [CrossRef]
  10. P. Besnard, X. L. Jia, R. Dalgliesh, A. D. May, and G. Stéphan, “Polarization switching in a microchip Nd:YAG laser using polarized feedback,” J. Opt. Soc. Am. B 10, 1605–1609 (1993). [CrossRef]
  11. G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20, 1163–1169 (1984). [CrossRef]
  12. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986). [CrossRef]
  13. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited