OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5402–5410

Lidar–radar velocimetry using a pulse-to-pulse coherent rf-modulated Q-switched laser

M. Vallet, J. Barreaux, M. Romanelli, G. Pillet, J. Thévenin, L. Wang, and M. Brunel  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. 5402-5410 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An rf-modulated pulse train from a passively Q-switched Nd:YAG laser has been generated using an extra-cavity acousto-optic modulator. The rf modulation reproduces the spectral quality of the local oscillator. It leads to a high pulse-to-pulse phase coherence, i.e., phase memory, over thousands of pulses. The potentialities of this transmitter for lidar–radar are demonstrated by performing Doppler velocimetry on indoor moving targets. The experimental results are in good agreement with a model based on elementary signal processing theory. In particular, we show experimentally and theoretically that lidar–radar is a promising technique that allows discrimination between translation and rotation movements. Being independent of the laser internal dynamics, this scheme can be applied to any Q-switched laser.

© 2013 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: April 5, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 26, 2013
Published: July 24, 2013

M. Vallet, J. Barreaux, M. Romanelli, G. Pillet, J. Thévenin, L. Wang, and M. Brunel, "Lidar–radar velocimetry using a pulse-to-pulse coherent rf-modulated Q-switched laser," Appl. Opt. 52, 5402-5410 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Eberhard and R. M. Schotland, “Dual-frequency Doppler-lidar method of wind measurement,” Appl. Opt. 19, 2967–2976 (1980). [CrossRef]
  2. L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microw. Theory Techn. 43, 2370–2377 (1995). [CrossRef]
  3. F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Radio frequency modulation on an optical carrier for target detection enhancement in sea-water,” J. Phys. D 34, 1122–1130 (2001). [CrossRef]
  4. L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Guarneri, M. Nuvoli, R. Ricci, and M. Francucci, “Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique,” J. Eur. Opt. Soc. Rapid Pub. 5, 10004 (2009). [CrossRef]
  5. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712 (2002). [CrossRef]
  6. R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual frequency source,” Opt. Lett. 31, 3600–3602 (2006). [CrossRef]
  7. D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29, 1203–1205 (2004). [CrossRef]
  8. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and Ph. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001). [CrossRef]
  9. G. Pillet, L. Morvan, D. Dolfi, and J.-P. Huignard, “Wideband dual-frequency lidar-radar for high resolution ranging, profilometry and Doppler measurement,” Proc. SPIE 7114, 71140E (2008). [CrossRef]
  10. M. Brunel and M. Vallet, “Pulse-to-pulse coherent beat note generated by a passively Q-switched two-frequency laser,” Opt. Lett. 33, 2524–2526 (2008). [CrossRef]
  11. A. E. Siegman, Lasers (University Science, 1986).
  12. N. D. Lai, M. Brunel, F. Bretenaker, and O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002).
  13. K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33, 1111–1114 (1994). [CrossRef]
  14. R. Kliese and A. D. Rakić, “Spectral broadening cause by dynamic speckle in self-mixing velocity sensors,” Opt. Express 20, 18757–18771 (2012). [CrossRef]
  15. G. Pillet, L. Morvan, D. Dolfi, and J.-P. Huignard, “Wideband dual-frequency lidar-radar for simultaneous velocity and high-resolution range profile measurements,” Proc. SPIE 7323, 73230Z (2009). [CrossRef]
  16. V. C. Chen, F. Li, S.-S. Ho, and H. Wechsler, “Analysis of micro-Doppler signatures,” IEE Proc. Radar Sonar Navig. 150, 271–276 (2003). [CrossRef]
  17. F. Pellen, V. Jezequel, G. Zion, and B. Le Jeune, “Detection of an underwater target through modulated lidar experiments at grazing incidence in a deep wave basin,” Appl. Opt. 51, 7690–7700 (2012). [CrossRef]
  18. Y. Bai, D. Ren, W. Zhao, Y. Qu, L. Qian, and Z. Chen, “Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser,” Opt. Express 20, 764–768 (2012). [CrossRef]
  19. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler Lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited