OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5420–5425

Photonic nanojet-enhanced nanometer-scale germanium photodiode

Mehdi Hasan and Jamesina J. Simpson  »View Author Affiliations


Applied Optics, Vol. 52, Issue 22, pp. 5420-5425 (2013)
http://dx.doi.org/10.1364/AO.52.005420


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A design challenge for photodiodes yielding both high speed and responsivity is the necessity to concentrate incident light into a subwavelength active volume region. Photonic nanojets have been reported in the literature as a means to focus an incident plane wave to a subwavelength-waist propagating beam with applications ranging from next-generation DVDs to characterizing subwavelength features within dielectric targets. In the present work, a new application of photonic nanojets is proposed, focusing electromagnetic energy into a photodiode. Three-dimensional finite-difference time-domain solutions are conducted to determine the advantages of photonic nanojet-enhanced photodiodes at near-infrared wavelengths (1310 nm). We find that photonic nanojets provide a factor of 26 increase in the volume-integrated electric field within the subwavelength active volume of the photodiode of size 0.0045μm3. Furthermore, this increase is achieved independent of the incident polarization and over a broad bandwidth. Photonic nanojets may thus serve as an attractive alternative to plasmonics for some applications.

© 2013 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.5160) Detectors : Photodetectors

ToC Category:
Optical Devices

History
Original Manuscript: April 23, 2013
Revised Manuscript: June 25, 2013
Manuscript Accepted: June 26, 2013
Published: July 24, 2013

Citation
Mehdi Hasan and Jamesina J. Simpson, "Photonic nanojet-enhanced nanometer-scale germanium photodiode," Appl. Opt. 52, 5420-5425 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-22-5420


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
  2. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008). [CrossRef]
  3. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010). [CrossRef]
  4. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006). [CrossRef]
  5. L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706–708 (2009). [CrossRef]
  6. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008). [CrossRef]
  7. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004). [CrossRef]
  8. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005). [CrossRef]
  9. S. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17, 3722–3731 (2009). [CrossRef]
  10. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
  11. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30, 2641–2643 (2005). [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, 2005).
  13. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008). [CrossRef]
  14. M. Kim, T. Scharf, S. Muhlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19, 10206–10220 (2011). [CrossRef]
  15. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008). [CrossRef]
  16. C. Mendez-Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18, 16805–16812 (2010). [CrossRef]
  17. J. Liu, Photonic Devices (Cambridge University, 2005).
  18. L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” IEEE Photon. J. 1, 69–79 (2009). [CrossRef]
  19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  20. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000). [CrossRef]
  21. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited