OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5426–5429

Correlation between the optical loss and crystalline quality in erbium-doped GaN optical waveguides

I-Wen Feng, Weiping Zhao, Jing Li, Jingyu Lin, Hongxing Jiang, and John Zavada  »View Author Affiliations


Applied Optics, Vol. 52, Issue 22, pp. 5426-5429 (2013)
http://dx.doi.org/10.1364/AO.52.005426


View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Erbium-doped GaN (GaN:Er) epilayers were synthesized by metal organic chemical vapor deposition. GaN:Er waveguides were fabricated based on four different GaN:Er layer structures: GaN:Er/GaN/Al2O3, GaN:Er/GaN/AlN/Al2O3, GaN:Er/GaN/Al0.75Ga0.25N/AlN/Al2O3, and GaN/GaN:Er/GaN/Al2O3. Optical loss at 1.54 μm in these waveguide structures has been measured. It was found that the optical attenuation coefficient of the GaN:Er waveguide increases almost linearly with the GaN (002) x-ray rocking curve linewidth. The lowest measured loss was 6dB/cm.

© 2013 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: May 1, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 5, 2013
Published: July 24, 2013

Citation
I-Wen Feng, Weiping Zhao, Jing Li, Jingyu Lin, Hongxing Jiang, and John Zavada, "Correlation between the optical loss and crystalline quality in erbium-doped GaN optical waveguides," Appl. Opt. 52, 5426-5429 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-22-5426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22, 63–70 (2004). [CrossRef]
  2. J. D. B. Bradley and M. Pollnau, “Erbium‐doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011). [CrossRef]
  3. A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going?,” MRS Proc. 866, 3–12 (2005). [CrossRef]
  4. R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Near infrared photonic devices based on Er-doped GaN and InGaN,” Opt. Mater. 33, 1066–1070 (2011). [CrossRef]
  5. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010). [CrossRef]
  6. A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003). [CrossRef]
  7. R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005). [CrossRef]
  8. A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+ related luminescence in In1-XGaXP,” Appl. Phys. Lett. 60, 2657–2659 (1992). [CrossRef]
  9. X. Z. Wang and B. W. Wessels, “Thermal quenching properties of Er doped GaP,” Appl. Phys. Lett. 64, 1537–1539 (1994). [CrossRef]
  10. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006). [CrossRef]
  11. J. Zavada and D. Zhang, “Luminescence properties of erbium in III–V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995). [CrossRef]
  12. K. Gerd, Optical Fiber Communications (McGraw-Hill, 1998).
  13. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  14. I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010). [CrossRef]
  15. W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997). [CrossRef]
  16. A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003). [CrossRef]
  17. F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26, 977–986 (1994). [CrossRef]
  18. A. Kovalenko, V. Kurashov, and O. Matievosova, “Radiation losses in planar dielectric waveguide with random rough surface,” in 2011 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkov, 2011, pp. 1–3.
  19. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009). [CrossRef]
  20. M. Moram and M. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72, 036502 (2009). [CrossRef]
  21. Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997). [CrossRef]
  22. Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited