OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5430–5439

Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells

Chenchen Wang, Natalie V. Wheeler, Coralie Fourcade-Dutin, Michael Grogan, Thomas D. Bradley, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. 5430-5439 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1606 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gas-filled hollow optical fiber references based on the P(13) transition of the ν 1 + ν 3 band of C 12 2 H 2 promise portability with moderate accuracy and stability. Previous realizations are corrected ( < 1 σ ) by using proper modeling of a shift due to line-shape. To improve portability, a sealed photonic microcell is characterized on the C 12 2 H 2 ν 1 + ν 3 P(23) transition with somewhat reduced accuracy and stability. Effects of the photonic crystal fiber, including surface modes, are explored. Both polarization-maintaining (PM) and non-PM 7-cell photonic bandgap fiber are shown to be unsuitable for kilohertz-level frequency references.

© 2013 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(300.6460) Spectroscopy : Spectroscopy, saturation
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 13, 2013
Manuscript Accepted: June 17, 2013
Published: July 24, 2013

Chenchen Wang, Natalie V. Wheeler, Coralie Fourcade-Dutin, Michael Grogan, Thomas D. Bradley, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin, "Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells," Appl. Opt. 52, 5430-5439 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of C132H2,” Opt. Commun. 234, 259–268 (2004). [CrossRef]
  2. H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007). [CrossRef]
  3. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201 (2005). [CrossRef]
  4. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow C132H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994). [CrossRef]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002). [CrossRef]
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005). [CrossRef]
  7. F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on C122H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006). [CrossRef]
  8. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009). [CrossRef]
  9. V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009). [CrossRef]
  10. A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.
  11. A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16, 3976–3985 (2008). [CrossRef]
  12. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  13. C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005). [CrossRef]
  14. A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, “Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1+ν3 band of C122H2 determined with laser frequency comb interval measurements,” J. Opt. Soc. Am. B 23, 2200–2208 (2006). [CrossRef]
  15. F. Benabid, P. S. Light, and F. Couny, “Low insertion-loss (1.8 dB) and vacuum-pressure all-fiber gas cell based on hollow-core PCF,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper 4386406.
  16. N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875–1877 (2010). [CrossRef]
  17. F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007). [CrossRef]
  18. J. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981). [CrossRef]
  19. J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009). [CrossRef]
  20. J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” presented at 28th Annual Symposium on Frequency Control (1974).
  21. C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.
  22. J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J. E. Pedersen, “Fiber laser optical frequency standard at 1.54 μm,” Opt. Express 19, 2052–2063 (2011). [CrossRef]
  23. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, Vol. 5 of Springer Series in Chemical Physics (Springer-Verlag, 1981).
  24. J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004). [CrossRef]
  25. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006). [CrossRef]
  26. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005). [CrossRef]
  27. C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.
  28. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited