OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5523–5532

Direct wavefront sensing in adaptive optical microscopy using backscattered light

Saad A. Rahman and Martin J. Booth  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. 5523-5532 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (990 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adaptive optics has been used to compensate the detrimental effects of aberrations in a range of high-resolution microscopes. We investigate how backscattered laser illumination can be used as the source for direct wavefront sensing using a pinhole-filtered Shack–Hartmann wavefront sensor. It is found that the sensor produces linear response to input aberrations for a given specimen. The gradient of this response is dependent upon experimental configuration and specimen structure. Cross sensitivity between modes is also observed. The double pass nature of the microscope system leads in general to lower sensitivity to odd-symmetry aberration modes. The results show that there is potential for use of this type of wavefront sensing in microscopes.

© 2013 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:

Original Manuscript: May 3, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 5, 2013
Published: July 30, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Saad A. Rahman and Martin J. Booth, "Direct wavefront sensing in adaptive optical microscopy using backscattered light," Appl. Opt. 52, 5523-5532 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007). [CrossRef]
  2. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009). [CrossRef]
  3. A. Jesacher, A. Thayil, K. Grieve, D. Débarre, T. Watanabe, T. Wilson, S. Srinivas, and M. Booth, “Adaptive harmonic generation microscopy of mammalian embryos.,” Opt. Lett. 34, 3154–3156 (2009). [CrossRef]
  4. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15, 046022 (2010). [CrossRef]
  5. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express 2, 3135–3149 (2011). [CrossRef]
  6. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011). [CrossRef]
  7. P. Vermeulen, E. Muro, T. Pons, V. Loriette, and A. Fragola, “Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers,” J. Biomed. Opt. 16, 076019 (2011). [CrossRef]
  8. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995). [CrossRef]
  9. L. Diaz-Santana and J. C. Dainty, “Effects of retinal scattering in the ocular double-pass process,” J. Opt. Soc. Am. A 18, 1437–1444 (2001). [CrossRef]
  10. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. USA 103, 17137–17142 (2006). [CrossRef]
  11. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36, 3389–3391 (2011). [CrossRef]
  12. X. Tao, J. Crest, S. Kotadia, O. Azucena, D. C. Chen, W. Sullivan, and J. Kubby, “Live imaging using adaptive optics with fluorescent protein guide-stars,” Opt. Express 20, 15969–15982 (2012). [CrossRef]
  13. S. A. Rahman and M. J. Booth, “Adaptive optics for high-resolution microscopy: wave front sensing using back scattered light,” Proc. SPIE 8253, 82530I (2012). [CrossRef]
  14. T. Wilson, ed. Confocal Microscopy (Academic, 1990).
  15. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  16. M. J. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44, 5131–5139 (2005). [CrossRef]
  17. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1009 (1980). [CrossRef]
  18. P. Artal, I. Iglesias, N. López-Gil, and D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995). [CrossRef]
  19. R. Navarro and M. A. Losada, “Phase transfer and point-spread function of the human eye determined by a new asymmetric double-pass method,” J. Opt. Soc. Am. A 12, 2385–2392 (1995). [CrossRef]
  20. T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited