OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5545–5551

SU8 inverted-rib waveguide Bragg grating filter

Cheng-Sheng Huang and Wei-Chih Wang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. 5545-5551 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polymeric SU8 inverted-rib waveguide Bragg grating filter fabricated using reactive ion etching (RIE) and solvent assisted microcontact molding (SAMIM) is presented. SAMIM is one kind of soft lithography. The technique is unique in that a composite hard-polydimethysiloxane/polydimethysiloxane stamp is used to transfer the grating pattern onto an inverted SU8 rib waveguide system. The composite grating stamp can be used repeatedly several times without degradation. Using this stamp and inverter-rib waveguide structure, the Bragg grating filter fabrication can be significantly simplified. The experiment result shows an attenuation dip in the transmission spectra, with a value of 7 dBm at 1550 nm for a grating with a period of 0.492 μm on an inverted-rib waveguide with 6.6 μm width and 4 μm height.

© 2013 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides
(250.5460) Optoelectronics : Polymer waveguides
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: May 1, 2013
Manuscript Accepted: June 27, 2013
Published: July 31, 2013

Cheng-Sheng Huang and Wei-Chih Wang, "SU8 inverted-rib waveguide Bragg grating filter," Appl. Opt. 52, 5545-5551 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).
  2. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
  3. M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998). [CrossRef]
  4. N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995). [CrossRef]
  5. J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003). [CrossRef]
  6. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993). [CrossRef]
  7. W. H. Wong, J. Zhou, and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110–2112 (2001). [CrossRef]
  8. S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
  9. J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998). [CrossRef]
  10. R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micormech. Microeng. 13, 80–88 (2003). [CrossRef]
  11. M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).
  12. B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005). [CrossRef]
  13. M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol. 25, 1284–1289 (2007). [CrossRef]
  14. E. Kim, Y. Xia, X.-M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997). [CrossRef]
  15. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
  16. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
  17. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13233–252 (1977).
  18. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  19. C. S. Huang, Y. B. Pun, and W. C. Wang, “Fabrication of a elastomeric rib waveguide with Bragg grating filter,” J. Opt. Soc. Am. B 26, 1256–1262 (2009). [CrossRef]
  20. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002). [CrossRef]
  21. C. S. Huang and W. C. Wang, “Large core single mode rib SU8 waveguide using solvent assisted microcontact molding,” Appl. Opt. 47, 4540–4547 (2008). [CrossRef]
  22. J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).
  23. T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003). [CrossRef]
  24. C. S. Huang, E. Y. B. Pun, and W. C. Wang, “SU-8 rib waveguide Bragg grating filter using composite stamp and solvent-assisted microcontact molding technique,” J. Micro/Nanolith. MEMS MOEMS 9, 023013 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited