OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: 5552–5561

Influence of Raman scattering on ocean color inversion models

Toby K. Westberry, Emmanuel Boss, and Zhongping Lee  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. 5552-5561 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2238 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Raman scattering can be a significant contributor to the emergent radiance spectrum from the surface ocean. Here, we present an analytical approach to directly estimate the Raman contribution to remote sensing reflectance, and evaluate its effects on optical properties estimated from two common semianalytical inversion models. For application of the method to ocean color remote sensing, spectral irradiance products in the ultraviolet from the OMI instrument are merged with MODerate-resolution Imaging Spectroradiometer (MODIS) data in the visible. The resulting global fields of Raman-corrected optical properties show significant differences from standard retrievals, particularly for the particulate backscattering coefficient, bbp, where average errors in clear ocean waters are 50%. Given the interest in transforming bbp into biogeochemical quantities, Raman scattering must be accounted for in semianalytical inversion schemes.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1690) Atmospheric and oceanic optics : Color
(010.5630) Atmospheric and oceanic optics : Radiometry
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 18, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: July 6, 2013
Published: August 1, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Toby K. Westberry, Emmanuel Boss, and Zhongping Lee, "Influence of Raman scattering on ocean color inversion models," Appl. Opt. 52, 5552-5561 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  2. C. R. McClain, S. R. Signorini, and J. R. Christian, “Subtropical gyre variability observed by ocean-color satellites,” Deep-Sea Research, Part II 51, 281–301 (2004). [CrossRef]
  3. D. G. Boyce, M. R. Lewis, and B. Worm, “Global phytoplankton decline over the past century,” Nature 466, 591–596 (2010). [CrossRef]
  4. M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444, 752–755 (2006). [CrossRef]
  5. C. V. Raman, “On the molecular scattering of light in water and the colour of the sea,” Proc. R. Soc. London Ser. A 101, 64–80 (1922). [CrossRef]
  6. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501–502 (1928). [CrossRef]
  7. G. E. Walrafen, “Raman spectral studies of effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967). [CrossRef]
  8. S. Sugihara, M. Kishino, and N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984). [CrossRef]
  9. B. R. Marshall and R. C. Smith, “Raman-scattering and in-water ocean optical-properties,” Appl. Opt. 29, 71–84 (1990). [CrossRef]
  10. J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998). [CrossRef]
  11. R. A. Desiderio, “Application of the Raman scattering coefficient of water to calculations in marine optics,” Appl. Opt. 39, 1893–1894 (2000). [CrossRef]
  12. H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38, 3166–3174 (1999). [CrossRef]
  13. R. H. Stavn and A. D. Weidemann, “Optical modeling of clear ocean light fields—Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988). [CrossRef]
  14. Y. T. Ge, H. R. Gordon, and K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean—variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
  15. K. J. Waters, “Effects of Raman-scattering on the water-leaving radiance,” J. Geophys. Res. 100, 13151–13161 (1995). [CrossRef]
  16. Y. T. Ge, K. J. Voss, and H. R. Gordon, “In-situ measurements of inelastic light-scattering in Monterey Bay using solar Fraunhofer lines,” J. Geophys. Res. 100, 13227–13236 (1995). [CrossRef]
  17. C. M. Hu and K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36, 6962–6967 (1997). [CrossRef]
  18. J. S. Bartlett, “The influence of Raman scattering by seawater and fluorescence by phytoplankton on ocean colour,” M.S. thesis (Dalhousie University, 1996).
  19. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  20. H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman, K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural waters,” Opt. Express 17, 16192–16208 (2009). [CrossRef]
  21. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994). [CrossRef]
  22. S. Sathyendranath and T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37, 2216–2227 (1998). [CrossRef]
  23. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000). [CrossRef]
  24. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications” (International Ocean Colour Coordination Group, 2006), .
  25. C. D. Mobley, B. Gentili, H. R. Gordon, Z. H. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical-models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef]
  26. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. A Review (Springer-Verlag, 1983).
  27. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001). [CrossRef]
  28. R. C. Smith and K. S. Baker, “Optical-properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981). [CrossRef]
  29. P. Ricchiazzi, S. R. Yang, C. Gautier, and D. Sowle, “SBDART: a research and teaching software tool for plane-parallell radiative transfer in the Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 79, 2101–2114 (1998). [CrossRef]
  30. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef]
  31. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]
  32. D. Pozdiakov and H. Grassl, Color of Inland and Coastal Waters: A Methodology for its Interpretation (Springer-Praxis, 2003), p. 192.
  33. H. R. Gordon, “Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm,” Appl. Opt. 18, 1161–1166 (1979). [CrossRef]
  34. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  35. V. I. Haltrin and G. W. Kattawar, “Self-consistent solutions to the equation of transfer with elastic and inelastic-scattering in ocean optics: 1. Model,” Appl. Opt. 32, 5356–5367 (1993). [CrossRef]
  36. C. Mobley, “Interpretation of Raman scattering computations,” HydroLight Technical Note, 10 (2012).
  37. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389–1409 (1989). [CrossRef]
  38. Z. P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005). [CrossRef]
  39. J. R. Morrison and N. B. Nelson, “Seasonal cycle of phytoplankton UV absorption at the Bermuda Atlantic Time-series Study (BATS) site,” Limnol. Oceanogr. 49, 215–224 (2004). [CrossRef]
  40. A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of Southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010). [CrossRef]
  41. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990). [CrossRef]
  42. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005). [CrossRef]
  43. Z. P. Lee, S. L. Shang, C. M. Hu, M. Lewis, R. Arnone, Y. H. Li, and B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res. 115, C09012 (2010). [CrossRef]
  44. Z. P. Lee, C. M. Hu, S. L. Shang, K. Du, M. Lewis, and R. Arnone, “Penetration of UV-visible solar light in the global oceans: insights from ocean color remote sensing,” J. Geophys. Res.-Oceans, in review.
  45. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  46. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111, 69–88 (2007). [CrossRef]
  47. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Rottgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008). [CrossRef]
  48. T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon-based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem Cycles 22, GB2024 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited