OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: E15–E21

Experimental study on the performance of a variable optical attenuator using polymer dispersed liquid crystal

Ghada Nabil, Wing Fat Ho, and Hau Ping Chan  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. E15-E21 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We applied polymer dispersed liquid crystal (PDLC) as the cladding material in a polymer-based variable optical attenuator. Three polymer inverted channel waveguides were fabricated, two with PDLC upper cladding (aligned PDLC and nonaligned PDLC) and one with aligned liquid crystal upper cladding. Upon operation, the waveguides with aligned upper claddings show relatively lower threshold and cutoff voltages compared to those with nonaligned PDLC cladding. But the waveguide with nonaligned PDLC upper cladding shows lower polarization dependence and a higher attenuation range of 39 and 41.37 dB for TM and TE modes, respectively, over a tuning field strength of 0.9V/μm.

© 2013 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(230.7380) Optical devices : Waveguides, channeled

Original Manuscript: January 3, 2013
Revised Manuscript: March 2, 2013
Manuscript Accepted: March 28, 2013
Published: April 24, 2013

Virtual Issues
Hybrid Organic-Inorganic Materials for Novel Photonic Applications (2013) Optical Materials Express

Ghada Nabil, Wing Fat Ho, and Hau Ping Chan, "Experimental study on the performance of a variable optical attenuator using polymer dispersed liquid crystal," Appl. Opt. 52, E15-E21 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990). [CrossRef]
  2. R. Chen, “Polymer offers fabrication and economic advantages for photonic integrated circuits,” SPIE OE Magazine, 24–26 (2002).
  3. R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991). [CrossRef]
  4. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000). [CrossRef]
  5. J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002). [CrossRef]
  6. A. Miniewicz, A. Gniewek, and J. Parka, “Liquid crystals for photonic applications,” Opt. Mater. 21, 605–610 (2002). [CrossRef]
  7. M. Warenghem, J. F. Henninot, and G. Abbate, “Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,” Opt. Express 2, 483–490 (1998). [CrossRef]
  8. M. A. Karpierz, “Solitary waves in liquid crystalline waveguides,” Phys. Rev. E 66, 036603 (2002). [CrossRef]
  9. J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of nematicon,” Opto-Electron. Rev. 14, 263–267 (2006). [CrossRef]
  10. C. Hu and J. R. Whinnery, “Losses of a nematic liquid crystal waveguide,” J. Opt. Soc. Am. 64, 1424–1432 (1974). [CrossRef]
  11. A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006). [CrossRef]
  12. W. DeCort, J. Beeckman, R. James, F. A. Fernández, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009). [CrossRef]
  13. A. Kato, K. Nakatsuhara, and T. Nakagami, “Wavelength tunable operation in Si waveguide grating that has a ferroelectric liquid crystal cladding,” J. Lightwave Technol. 31, 349–354 (2013) and references therein. [CrossRef]
  14. Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007). [CrossRef]
  15. A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994). [CrossRef]
  16. I. C. Khoo, Y. Zhang Williams, B. Lewis, and T. Mallouk, “Photorefractive CdSe and gold nanowire doped liquid crystals and polymer dispersed liquid crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446, 233–244 (2005). [CrossRef]
  17. J. L. West, R. B. Akins, J. Francl, and J. W. Doane, “Cholesteric/polymer dispersed light shutters,” Appl. Phys. Lett. 63, 1471–1473 (1993). [CrossRef]
  18. H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, “Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator,” Mol. Cryst. Liq. Cryst. 404, 57–73 (2003). [CrossRef]
  19. Y. Xu, M. A. Uddin, P. S. Chung, and H. P. Chan, “Polymer planar waveguide device using inverted channel structure with upper liquid crystal cladding,” Opt. Express 17, 7837–7843 (2009). [CrossRef]
  20. M. Ghada, M. Nabil, and A. Hassanein, “Characterization of polymer dispersed liquid crystal for photonic device applications,” Ph.D. thesis (Electronic Engineering Department, City University of Hong Kong, 2012).
  21. K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282, 4374–4377 (2009). [CrossRef]
  22. J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005). [CrossRef]
  23. C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005). [CrossRef]
  24. Y. Huang, “Polarization independent two-way variable optical attenuator based on polymer-stabilized cholesteric liquid crystal,” Opt. Express 18, 10289–10293 (2010). [CrossRef]
  25. Q. Wang, D. Zhang, Y. Huang, Z. Ni, J. Chen, Y. Zhong, and S. Zhuang, “Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal,” Opt. Lett. 35, 1236–1238 (2010). [CrossRef]
  26. M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992). [CrossRef]
  27. J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977). [CrossRef]
  28. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002). [CrossRef]
  29. W. R. Headley, G. T. Reed, and S. Howe, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004). [CrossRef]
  30. K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.
  31. P. Malik and K. K. Raina, “Droplet orientation and optical properties of polymer dispersed liquid crystal composite films,” Opt. Mater. 27, 613–617 (2004). [CrossRef]
  32. S. S. Lee, Y. S. Jin, Y. S. Son, and T. K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photonics Technol. Lett. 11, 590–592 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited