OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: E53–E59

Cholesteric liquid crystal–carbon nanotube composites with photo-settable reversible and memory electro-optic modes

Oleg Yaroshchuk, Sergiy Tomylko, Igor Gvozdovskyy, and Rumiko Yamaguchi  »View Author Affiliations


Applied Optics, Vol. 52, Issue 22, pp. E53-E59 (2013)
http://dx.doi.org/10.1364/AO.52.000E53


View Full Text Article

Enhanced HTML    Acrobat PDF (723 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photoresponsive electro-optical composites based on cholesteric liquid crystal (CLC) with optically controlled chirality and a minute amount of carbon nanotubes (CNTs) are studied. In cells with homeotropic anchoring, these composites exhibit a transition from fingerprint texture to homeotropic nematic texture in the course of photoinduced unwinding of the cholesteric helix. Compared with the CLC counterpart, this transition is much delayed, because of the stabilization of cholesteric filamentary domains by CNTs. The CLC-CNT composites demonstrate dual-mode operation with optical switching between reversible and memory mode. It is found that the memory response is associated with the elastic network of filamentary cholesteric domains that stabilizes the planar CLC texture reached in an electric field. In turn, the reversible mode corresponds to the unwound cholesteric state. Potential applications of this effect are discussed.

© 2013 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.2100) Materials : Electro-optical materials
(160.2900) Materials : Optical storage materials
(160.5335) Materials : Photosensitive materials
(310.6845) Thin films : Thin film devices and applications

History
Original Manuscript: February 20, 2013
Revised Manuscript: April 30, 2013
Manuscript Accepted: May 7, 2013
Published: June 7, 2013

Virtual Issues
Hybrid Organic-Inorganic Materials for Novel Photonic Applications (2013) Optical Materials Express

Citation
Oleg Yaroshchuk, Sergiy Tomylko, Igor Gvozdovskyy, and Rumiko Yamaguchi, "Cholesteric liquid crystal–carbon nanotube composites with photo-settable reversible and memory electro-optic modes," Appl. Opt. 52, E53-E59 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-22-E53


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.-H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51, 2298–2301 (1983). [CrossRef]
  2. F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006). [CrossRef]
  3. Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002). [CrossRef]
  4. T. Zhang, C. Zhong, and J. Xu, “CdS-nanoparticle-doped liquid crystal displays showing low threshold voltage,” Jpn. J. Appl. Phys. 48, 055002 (2009). [CrossRef]
  5. M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable optical storage in bistable liquid crystal cells,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 223, 219–227 (1992). [CrossRef]
  6. M. Boxtel, R. Janssen, C. Bastiaansen, and D. Broer, “Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells,” J. Appl. Phys. 89, 838–842 (2001). [CrossRef]
  7. H. Qi and T. Hegmann, “Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays,” J. Mater. Chem. 18, 3288–3294 (2008). [CrossRef]
  8. M. Rahman and W. Lee, “Scientific duo of carbon nanotubes and nematic liquid crystals,” J. Phys. D 42, 063001 (2009). [CrossRef]
  9. A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997). [CrossRef]
  10. L. Dolgov, O. Yaroshchuk, and N. Lebovka, “Effect of electro-optic memory in liquid crystals doped with carbon nanotubes,” Mol. Cryst. Liq. Cryst. 496, 212–229 (2008). [CrossRef]
  11. L. Dolgov, N. Lebovka, and O. Yaroshchuk, “Effect of electro-optic memory in suspensions of carbon nanotubes in liquid crystal,” Colloid J. 71, 603–611 (2009). [CrossRef]
  12. L. Dolgov, O. Yaroshchuk, S. Tomylko, and N. Lebovka, “Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes,” Condens. Matter Phys. 15, 33401 (2012). [CrossRef]
  13. L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010). [CrossRef]
  14. S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16, 877–882 (1994). [CrossRef]
  15. A. Kovalchuk, S. Zakrevska, O. Yaroshchuk, and U. Maschke, “Electrooptical properties of three-component compositions liquid crystal-aerosil-photopolymer,” Mol. Cryst. Liq. Cryst. 368, 129–136 (2001). [CrossRef]
  16. Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 330, 375–381 (1999). [CrossRef]
  17. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499–3508 (2012). [CrossRef]
  18. B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
  19. V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instabilities of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50, 994–999 (1979).
  20. M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999). [CrossRef]
  21. T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011). [CrossRef]
  22. L. Dolgov, S. Tomylko, O. Koval’chuk, N. Lebovka, and O. Yaroshchuk, “Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities,” in Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2010), Chap. 24, pp. 451–484, http://sciyo.com/books/show/title/carbon-nanotubes .
  23. J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010). [CrossRef]
  24. M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010). [CrossRef]
  25. C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008). [CrossRef]
  26. C.-Y. Huang, C.-C. Lai, Y.-J. Huang, and J.-H. Chen, “Switching characteristics of silica nanoparticle-doped dual-mode liquid crystal device,” Jpn. J. Appl. Phys. 49, 028003 (2010). [CrossRef]
  27. J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited