OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: E60–E67

Surface-polymer stabilized liquid crystals with dual-frequency control

Amalya Minasyan and Tigran Galstian  »View Author Affiliations

Applied Optics, Vol. 52, Issue 22, pp. E60-E67 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual-frequency control liquid crystal (LC) and thin reactive mesogen (RM) films, cast on internal surfaces of cell substrate, are used to build surface polymer stabilized structures. Electric field of high frequency is used to orient the LC molecules by the negative dielectric torque prior to the photopolymerization of RM films. Electro-optic characterization results show that the contrasts of light scatter modulation and polarization dependence are noticeably improved by the dual-frequency control. However, there is no significant shortening in the full cycle duration of excitation–relaxation–excitation.

© 2013 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.2100) Materials : Electro-optical materials
(160.3710) Materials : Liquid crystals
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers

Original Manuscript: April 2, 2013
Revised Manuscript: May 6, 2013
Manuscript Accepted: May 6, 2013
Published: June 14, 2013

Virtual Issues
Hybrid Organic-Inorganic Materials for Novel Photonic Applications (2013) Optical Materials Express

Amalya Minasyan and Tigran Galstian, "Surface-polymer stabilized liquid crystals with dual-frequency control," Appl. Opt. 52, E60-E67 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).
  2. L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer, 1994).
  3. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  4. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18, 13981–13992 (2010). [CrossRef]
  5. H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002). [CrossRef]
  6. V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004). [CrossRef]
  7. T. Galstian, A. Zohrabyan, A. Tork, D. Dumont, and R. Birabassov, “In-guide control of optical propagation,” U.S. patent6,859,567 (22February2005).
  8. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).
  9. X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005). [CrossRef]
  10. A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” SID Digest 34, 1472–1475 (2003). [CrossRef]
  11. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988). [CrossRef]
  12. R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995). [CrossRef]
  13. Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004). [CrossRef]
  14. J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Macromolecules 44, 344–348 (2011). [CrossRef]
  15. J.-P. Bédard-Arcand and T. Galstian, “Surface-polymer stabilized liquid crystals,” Mol. Cryst. Liq. Cryst. 560, 170–182 (2012). [CrossRef]
  16. J.-P. Bédard-Arcand and T. Galstian, “Programmable and electrically controllable light scattering from surface-polymer stabilized liquid crystals,” J. Opt. Soc. Am. A 29, 1675–1679 (2012). [CrossRef]
  17. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).
  18. S. Bassene and T. Galstian, “Coherent recovery of the degree of polarization of light propagating in random anisotropy media,” Opt. Lett. 35, 3294–3296 (2010). [CrossRef]
  19. S. Bassene and T. Galstian, “Interferential quenching of light transmission in microsphere dispersions of liquid-crystal clusters,” Opt. Lett. 34, 1663–1665 (2009). [CrossRef]
  20. Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004). [CrossRef]
  21. N. J. Mottram and C. V. Brown, “Pulsed addressing of a dual-frequency nematic liquid crystal,” Phys. Rev. E 74, 031703 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited