OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: E68–E72

Graphene-based tunable terahertz and infrared band-pass filter

M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh  »View Author Affiliations


Applied Optics, Vol. 52, Issue 22, pp. E68-E72 (2013)
http://dx.doi.org/10.1364/AO.52.000E68


View Full Text Article

Enhanced HTML    Acrobat PDF (749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a sheet of graphene as a simple band-pass filter in terahertz and infrared frequencies. The central frequency and quality factor of this band-pass filter can be tuned by changing the physical parameters, such as the substrate thickness, gate voltage, temperature, and conductivity of the graphene. The effects of these parameters on surface plasmon polariton waves and filter specifications are numerically depicted.

© 2013 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(250.5403) Optoelectronics : Plasmonics

History
Original Manuscript: February 27, 2013
Revised Manuscript: May 7, 2013
Manuscript Accepted: May 15, 2013
Published: June 14, 2013

Virtual Issues
Hybrid Organic-Inorganic Materials for Novel Photonic Applications (2013) Optical Materials Express

Citation
M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh, "Graphene-based tunable terahertz and infrared band-pass filter," Appl. Opt. 52, E68-E72 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-22-E68


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000). [CrossRef]
  2. R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003). [CrossRef]
  3. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88, 071110 (2006). [CrossRef]
  4. A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007). [CrossRef]
  5. A. Baldycheva, V. A. Tolmachev, T. S. Perova, Y. A. Zharova, E. V. Astrova, and K. Berwick, “Silicon photonic crystal filter with ultrawide passband characteristics,” Opt. Lett. 36, 1854–1856 (2011). [CrossRef]
  6. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003). [CrossRef]
  7. J. He, P. Liu, Y. He, and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51, 776–779 (2012). [CrossRef]
  8. J. Lee, M. Seo, D. Park, D. Kim, S. Jeoung, C. Lienau, Q. Park, and P. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14, 1253–1259 (2006). [CrossRef]
  9. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17, 18590–18595 (2009). [CrossRef]
  10. Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011). [CrossRef]
  11. Y. Zhu, S. Vegesna, V. Kuryatkov, M. Holtz, M. Saed, and A. A. Bernussi, “Terahertz bandpass filters using double-stacked metamaterial layers,” Opt. Lett. 37, 296–298 (2012). [CrossRef]
  12. S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012). [CrossRef]
  13. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007). [CrossRef]
  14. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007). [CrossRef]
  15. T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. J. Herrero, “Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225–229 (2013). [CrossRef]
  16. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012). [CrossRef]
  17. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012). [CrossRef]
  18. F. Xia, B. Farmer, Y. B. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10, 715–718 (2010). [CrossRef]
  19. G. W. Hanson, “Quasi-TEM modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104, 084314 (2008). [CrossRef]
  20. M. G. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B 85, 195413 (2012). [CrossRef]
  21. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008). [CrossRef]
  22. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef]
  23. F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007). [CrossRef]
  24. M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv. Phys. 51, 1–186 (2002). [CrossRef]
  25. T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons,” Phys. Rev. Lett. 98, 196803 (2007). [CrossRef]
  26. I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007). [CrossRef]
  27. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005). [CrossRef]
  28. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited