OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 22 — Aug. 1, 2013
  • pp: E73–E77

Transmissive liquid crystal light-valve for near-infrared applications

Umberto Bortolozzo, Stefania Residori, and Jean-Pierre Huignard  »View Author Affiliations


Applied Optics, Vol. 52, Issue 22, pp. E73-E77 (2013)
http://dx.doi.org/10.1364/AO.52.000E73


View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical valve is realized by associating a nematic liquid crystal layer with a Cr-doped gallium arsenide as a photoconductive substrate. The light-valve is shown to efficiently operate in transmission at 1.06 μm optical wavelength. The optical phase shift and refractive index change are measured as a function of the incident light intensity and of the voltage applied. Additionally, the light-valve is shown to act as a self-defocusing medium. Combining transmissive properties and nonlinear features, applications for dynamic holography in the near-infrared region of the spectrum can be envisaged.

© 2013 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(090.2880) Holography : Holographic interferometry
(160.3710) Materials : Liquid crystals
(070.6120) Fourier optics and signal processing : Spatial light modulators

History
Original Manuscript: January 11, 2013
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 14, 2013
Published: July 15, 2013

Virtual Issues
Hybrid Organic-Inorganic Materials for Novel Photonic Applications (2013) Optical Materials Express

Citation
Umberto Bortolozzo, Stefania Residori, and Jean-Pierre Huignard, "Transmissive liquid crystal light-valve for near-infrared applications," Appl. Opt. 52, E73-E77 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-22-E73


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Efron and G. Liverscu, Spatial Light Modulator Technology: Materials, Devices and Applications (Marcel Dekker, 1995).
  2. N. Collings, Optical Pattern Recognition Using Holographic Techniques (Addison-Wesley, 1988).
  3. D. Armitage, J. I. Thackara, and W. D. Eades, “Photoaddressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989). [CrossRef]
  4. J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975). [CrossRef]
  5. K. Lu and B. E. A. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Opt. 30, 2354–2362 (1991). [CrossRef]
  6. P. R. Ashley and J. H. Davis, “Amorphous silicon photoconductor in a liquid crystal spatial light modulator,” Appl. Opt. 26, 241–246 (1987). [CrossRef]
  7. P. R. Ashley, J. H. Davis, and T. K. Oh, “Liquid crystal spatial light modulator with a transmissive amorphous silicon photoconductor,” Appl. Opt. 27, 1797–1802 (1988). [CrossRef]
  8. S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves; onset of ‘optical turbulence’,” JETP Lett. 47, 611–614 (1988).
  9. U. Efron, S. T. Wu, and T. D. Bates, “Nematic liquid crystals for spatial light modulators: recent studies,” J. Opt. Soc. Am. B 3, 247–252 (1986). [CrossRef]
  10. P. Aubourg, J. P. Huignard, M. Hareng, and R. A. Mullen, “Liquid crystal light valve using bulk monocrystalline Bi12SiO20 as the photoconductive material,” Appl. Opt. 21, 3706–3712 (1982). [CrossRef]
  11. R. L. Sutherland, G. Cook, and D. R. Evans, “Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows,” Opt. Express 14, 5365–5375 (2006). [CrossRef]
  12. D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater. 16, 271–280 (2007). [CrossRef]
  13. J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31, 993–995 (2006). [CrossRef]
  14. U. Bortolozzo, S. Residori, and J. P. Huignard, “Nonlinear optical applications of photorefractive liquid crystal light-valves,” J. Nonlinear Opt. Phys. Mater. 16, 231–246 (2007). [CrossRef]
  15. U. Bortolozzo, S. Residori, and J. P. Huignard, “Beam coupling in photorefractive liquid crystal light valves,” J. Phys. D 41, 224007 (2008).
  16. U. Bortolozzo, S. Residori, and J. P. Huignard, “Adaptive holography in liquid crystal light-valves,” Materials 5, 1546–1559 (2012). [CrossRef]
  17. U. Bortolozzo, S. Residori, and J. P. Huignard, “Enhancement of the two-wave-mixing gain in a stack of thin nonlinear media by use of the Talbot effect,” Opt. Lett. 31, 2166–2168 (2006). [CrossRef]
  18. U. Bortolozzo, S. Residori, and J. P. Huignard, “Self-pumped phase conjugation in a liquid crystal light valve with a tilted feedback mirror,” Opt. Lett. 32, 829–831 (2007). [CrossRef]
  19. S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008). [CrossRef]
  20. U. Bortolozzo, S. Residori, and J. P. Huignard, “Picometer detection by adaptive holographic interferometry in a liquid-crystal light valve,” Opt. Lett. 34, 2006–2008 (2009). [CrossRef]
  21. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Science Publications, Clarendon, 1993).
  22. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, 2nd ed. (Wiley-Interscience, 2007).
  23. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystals Devices (Wiley, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited