OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 23 — Aug. 10, 2013
  • pp: 5640–5644

Reflective terahertz imaging with the TEM01 mode laser beam

Irmantas Kašalynas, Rimvydas Venckevičius, Laurynas Tumonis, Bogdan Voisiat, Dalius Seliuta, Gintaras Valušis, and Gediminas Račiukaitis  »View Author Affiliations


Applied Optics, Vol. 52, Issue 23, pp. 5640-5644 (2013)
http://dx.doi.org/10.1364/AO.52.005640


View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Reflective terahertz imaging with a first-order Hermite–Gaussian laser beam was experimentally investigated. High spatial resolution targets prepared by direct laser microprocessing were used to evaluate the performance. The reflection imaging system at 2.524 THz frequency demonstrated up to diffraction limited resolution using the single focusing mirror with the numerical aperture not smaller than 0.6. The TEM 01 mode laser beam was also applied for practical samples such as silicon solar cell terahertz (THz) imaging. It is shown that usage of appropriate optics enables us to obtain high-quality THz images with the multimode laser beam.

© 2013 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(140.3460) Lasers and laser optics : Lasers
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 18, 2013
Manuscript Accepted: June 23, 2013
Published: August 5, 2013

Citation
Irmantas Kašalynas, Rimvydas Venckevičius, Laurynas Tumonis, Bogdan Voisiat, Dalius Seliuta, Gintaras Valušis, and Gediminas Račiukaitis, "Reflective terahertz imaging with the TEM01 mode laser beam," Appl. Opt. 52, 5640-5644 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-23-5640


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–928 (2002). [CrossRef]
  2. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett. 33, 1258–1260 (2008). [CrossRef]
  3. L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011). [CrossRef]
  4. A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012). [CrossRef]
  5. S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012). [CrossRef]
  6. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19, 7827–7832 (2011). [CrossRef]
  7. H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46, S8–S11 (2010). [CrossRef]
  8. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum cascade laser operating significantly above the temperature of hω/kB,” Nat. Phys. 7, 166–171 (2010). [CrossRef]
  9. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21, 968–973 (2013). [CrossRef]
  10. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012). [CrossRef]
  11. M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Stand-alone system for high-resolution, real-time terahertz imaging,” Opt. Express 20, 2772–2778 (2012). [CrossRef]
  12. S. Ding, Q. Li, R. Yao, and Q. Wang, “High-resolution terahertz reflective imaging and image restoration,” Appl. Opt. 49, 6834–6839 (2010). [CrossRef]
  13. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H. W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010). [CrossRef]
  14. M. C. Kemp, “Explosives detection by terahertz spectroscopy—a bridge too far?,” IEEE Trans. Terahertz Sci. Technol. 1, 282–292 (2011). [CrossRef]
  15. J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006). [CrossRef]
  16. M. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010). [CrossRef]
  17. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005). [CrossRef]
  18. Q. Li, S.-H. Ding, R. Yao, and Q. Wang, “Real-time terahertz scanning imaging by use of a pyroelectric array camera and image denoising,” J. Opt. Soc. Am. A 27, 2381–2386 (2010). [CrossRef]
  19. I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011). [CrossRef]
  20. I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.
  21. C. B. Arnold and A. Piqué, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007). [CrossRef]
  22. A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011). [CrossRef]
  23. W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2010), pp. 79–129.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited