OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 23 — Aug. 10, 2013
  • pp: 5663–5670

Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. Gh. Podoleanu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 23, pp. 5663-5670 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography (OCT) has the potential for skin tissue characterization due to its high axial and transverse resolution and its acceptable depth penetration. In practice, OCT cannot reach the theoretical resolutions due to imperfections of some of the components used. One way to improve the quality of the images is to estimate the point spread function (PSF) of the OCT system and deconvolve it from the output images. In this paper, we investigate the use of solid phantoms to estimate the PSF of the imaging system. We then utilize iterative Lucy–Richardson deconvolution algorithm to improve the quality of the images. The performance of the proposed algorithm is demonstrated on OCT images acquired from a variety of samples, such as epoxy-resin phantoms, fingertip skin and basaloid larynx and eyelid tissues.

© 2013 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.3000) Imaging systems : Image quality assessment
(100.3175) Image processing : Interferometric imaging

ToC Category:
Imaging Systems

Original Manuscript: January 16, 2013
Revised Manuscript: May 2, 2013
Manuscript Accepted: July 5, 2013
Published: August 6, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. Gh. Podoleanu, "Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm," Appl. Opt. 52, 5663-5670 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  2. A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005). [CrossRef]
  3. J. M. Schmitt and Z. Liang, “Deconvolution and enhancement of optical coherence tomograms,” Proc. SPIE 2981, 46–57 (1997). [CrossRef]
  4. MathWorks, Deblurring with the Lucy–Richardson Algorithm: The Language of Technical Computing (accessed Sept. 2012), http://www.mathworks.com .
  5. J. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114, 1051–1069 (2002). [CrossRef]
  6. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26, 72–77 (2009). [CrossRef]
  7. M. D. Kulkarni, J. A. Izatt, and M. V. Sivak, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997). [CrossRef]
  8. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transversal blurring in optical coherence tomography,” IEEE Trans. Image Process. 14, 1254–1264 (2005). [CrossRef]
  9. A. P. Dhawan, R. M. Rangayyan, and R. Gordon, “Image restoration by Wiener deconvolution in limited-view computed tomography,” Appl. Opt. 24, 4013–4020 (1985). [CrossRef]
  10. D. Fish, A. Brinicombe, E. Pike, and J. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. A 12, 58–65 (1995). [CrossRef]
  11. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Pearson Education India, 2004).
  12. M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc. 243, 124–140 (2011). [CrossRef]
  13. A. Agrawal, M. Connors, A. Beylin, C.-P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express 3, 1116–1126 (2012). [CrossRef]
  14. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  15. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974). [CrossRef]
  16. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982). [CrossRef]
  17. M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. Lobo Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for excitation optimization of Fabry–Perot filters used in swept sources,” IEEE Photon. Technol. Lett. 25, 472–475 (2013). [CrossRef]
  18. M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009). [CrossRef]
  19. M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009). [CrossRef]
  20. M. R. N. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013). [CrossRef]
  21. M. Yadlowsky, J. Schmitt, and R. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995). [CrossRef]
  22. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24, 1901–1910 (2007). [CrossRef]
  23. M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
  24. M. Avanaki, P. P. Laissue, T. J. Eom, A. Gh. Podoleanu, and A. Hojjatoleslami, “Speckle reduction using an artificial neural network algorithm,” Appl. Opt. 52, 5050–5057 (2013). [CrossRef]
  25. A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012). [CrossRef]
  26. Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23–26 (2007). [CrossRef]
  27. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited