OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 23 — Aug. 10, 2013
  • pp: 5718–5723

Enhanced sensitivity in dark-field microscopy by optimizing the illumination angle

Michael A. Taylor and Warwick P. Bowen  »View Author Affiliations

Applied Optics, Vol. 52, Issue 23, pp. 5718-5723 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dark-field microscopy is a well-known technique used to exclude the bright background of unscattered photons from a measurement. We show that by choosing an appropriate illumination angle, the background of unwanted scattered light can also be suppressed. The collected flux of scattered photons is calculated in the Mie scattering regime for various particle sizes and objectives over a range of illumination angles. In the case that the dark-field measurement is limited by background scattering, we find that the sensitivity can be improved by lowering the objective numerical aperture. The collected photon flux is calculated for an exemplary dark-field microscopy experiment in which lipid granules were studied within yeast cells. Our model suggests that the signal-to-noise ratio was over three-orders-of-magnitude higher than it would have been with an equivalent bright-field setup.

© 2013 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory

ToC Category:

Original Manuscript: May 28, 2013
Revised Manuscript: July 15, 2013
Manuscript Accepted: July 16, 2013
Published: August 7, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Michael A. Taylor and Warwick P. Bowen, "Enhanced sensitivity in dark-field microscopy by optimizing the illumination angle," Appl. Opt. 52, 5718-5723 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Noda and S. Kamimura, “A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement,” Rev. Sci. Instrum. 79, 023704 (2008). [CrossRef]
  2. H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J. 98, 2014–2023 (2010). [CrossRef]
  3. S. Kudo, Y. Magariyama, and S. I. Aizawa, “Abrupt changes in flagellar rotation observed by laser dark-field microscopy,” Nature 346, 677–680 (1990). [CrossRef]
  4. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000). [CrossRef]
  5. A. R. Dunn and J. A. Spudich, “Dynamics of the unbound head during myosin V processive translocation,” Nat. Struct. Mol. Biol. 14, 246–248 (2007). [CrossRef]
  6. M. Nishiyama, E. Muto, Y. Inoue, T. Yanagida, and H. Higuchi, “Substeps within the 8 nm step of the ATPase cycle of single kinesin molecules,” Nat. Cell Biol. 3, 425–428 (2001). [CrossRef]
  7. R. Yasuda, H. Noji, M. Yoshida, K. Kinosita, and H. Itoh, “Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase,” Nature 410, 898–904 (2001). [CrossRef]
  8. A. K. Dunn, “Light scattering properties of cells,” Doctoral dissertation (University of Texas at Austin, 1997).
  9. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013). [CrossRef]
  10. A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996). [CrossRef]
  11. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999). [CrossRef]
  12. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995). [CrossRef]
  13. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998). [CrossRef]
  14. B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994). [CrossRef]
  15. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  16. J. D. Wilson and T. H. Foster, “Mie theory interpretations of light scattering from intact cells,” Opt. Lett. 30, 2442–2444 (2005). [CrossRef]
  17. M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009). [CrossRef]
  18. D. R. Huffman and C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2008).
  19. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöener, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007). [CrossRef]
  20. M. A. Taylor, J. Knittel, and W. P. Bowen, “Fundamental constraints on particle tracking with optical tweezers,” New J. Phys. 15, 023018 (2013). [CrossRef]
  21. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994). [CrossRef]
  22. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007). [CrossRef]
  23. M. Uchida, Y. Sun, G. McDermott, C. Knoechel, M. A. Le Gros, D. Parkinson, D. G. Drubin, and C. A. Larabell, “Quantitative analysis of yeast internal architecture using soft x-ray tomography,” Yeast 28, 227–236 (2011). [CrossRef]
  24. R. Thar and M. Kühl, “Propagation of electromagnetic radiation in mitochondria?” J. Theor. Biol. 230, 261–270 (2004). [CrossRef]
  25. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996). [CrossRef]
  26. I. M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sørensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 078102 (2004). [CrossRef]
  27. L. Sacconi, I. M. Tolic-Nørrelykke, M. D’Amico, F. Vanzi, M. Olivotto, R. Antolini, and F. S. Pavone, “Cell imaging and manipulation by nonlinear optical microscopy,” Cell Biochem. Biophys. 45, 289–302 (2006). [CrossRef]
  28. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry Part A 65, 88–92 (2005). [CrossRef]
  29. A. Brunsting and P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974). [CrossRef]
  30. O. C. Marina, C. K. Sanders, and J. R. Mourant, “Correlating light scattering with internal cellular structures,” Biomed. Opt. Express 3, 296–312 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited