OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 23 — Aug. 10, 2013
  • pp: 5733–5741

Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement

Yusheng Bian and Qihuang Gong  »View Author Affiliations


Applied Optics, Vol. 52, Issue 23, pp. 5733-5741 (2013)
http://dx.doi.org/10.1364/AO.52.005733


View Full Text Article

Enhanced HTML    Acrobat PDF (1056 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical characteristics of a metal-coated dielectric wedge structure are investigated at a wavelength of 1550 nm. The effects of the metal/gap layers’ thicknesses, as well as the dimension of the dielectric wedge on the guided modes’ properties, are systematically analyzed. It is revealed that the characteristics of the fundamental quasi-TE and quasi-TM plasmonic modes supported by the configuration demonstrate similar trends against the variation of the metal layer thickness while exhibiting quite different behaviors with the change of the wedge size. By choosing appropriate physical dimensions, both modes could simultaneously achieve low modal loss and subwavelength field confinement, along with reasonable mode power inside the low-index gap region. Investigations on the directional coupling between adjacent identical waveguides indicate that ultralow crosstalk can be enabled by the quasi-TE mode, with the coupling length more than two orders of magnitude larger than that achieved by the plasmonic mode in conventional hybrid counterparts. The presented metal-coated dielectric wedge structures can be employed as important building blocks for a number of integrated nanophotonic components, and could also enable numerous applications at the subwavelength scale.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optoelectronics

History
Original Manuscript: June 7, 2013
Revised Manuscript: July 7, 2013
Manuscript Accepted: July 12, 2013
Published: August 7, 2013

Citation
Yusheng Bian and Qihuang Gong, "Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement," Appl. Opt. 52, 5733-5741 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-23-5733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  5. Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]
  6. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  7. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011). [CrossRef]
  8. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  9. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010). [CrossRef]
  10. Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010). [CrossRef]
  11. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides,” Opt. Express 18, 18945–18959 (2010). [CrossRef]
  12. L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B 111, 15–19 (2013). [CrossRef]
  13. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99, 031112 (2011). [CrossRef]
  14. H. S. Chu, P. Bai, E. P. Li, and W. R. J. Hoefer, “Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits,” Plasmonics 6, 591–597 (2011). [CrossRef]
  15. Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010). [CrossRef]
  16. H. S. Chu, Y. Akimov, P. Bai, and E. P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37, 4564–4566 (2012). [CrossRef]
  17. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012). [CrossRef]
  18. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011). [CrossRef]
  19. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton. 1, 17–22 (2012). [CrossRef]
  20. C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013). [CrossRef]
  21. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011). [CrossRef]
  22. H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express 21, 11839–11851 (2013). [CrossRef]
  23. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett. 36, 3371–3373 (2011). [CrossRef]
  24. J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett. 38, 848–850 (2013). [CrossRef]
  25. X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19, 12865–12872 (2011).
  26. J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010). [CrossRef]
  27. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Laser and Electro-Optics (IEEE2007), paper JThD112.
  28. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009). [CrossRef]
  29. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010). [CrossRef]
  30. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010). [CrossRef]
  31. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010). [CrossRef]
  32. D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49, 6868–6871 (2010). [CrossRef]
  33. Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B 27, 1260–1265 (2010). [CrossRef]
  34. Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19, 11746–11752 (2011). [CrossRef]
  35. L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011). [CrossRef]
  36. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011). [CrossRef]
  37. H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys. 108, 063108 (2010). [CrossRef]
  38. J. Zhang, L. K. Cai, W. L. Bai, Y. Xu, and G. F. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett. 36, 2312–2314 (2011). [CrossRef]
  39. C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18, 1661–1668 (2012). [CrossRef]
  40. R. Hao, E. P. Li, and X. C. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett. 37, 2934–2936 (2012). [CrossRef]
  41. Q. J. Lu, D. R. Chen, and G. Z. Wu, “Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire,” Opt. Commun. 289, 64–68 (2013). [CrossRef]
  42. Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express 21, 1430–1439 (2013). [CrossRef]
  43. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013). [CrossRef]
  44. Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013). [CrossRef]
  45. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009). [CrossRef]
  46. B. F. Yun, G. H. Hu, Y. Ji, and Y. P. Cui, “Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity,” J. Opt. Soc. Am. B 26, 1924–1929 (2009). [CrossRef]
  47. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010). [CrossRef]
  48. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30, 163–168 (2012). [CrossRef]
  49. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006). [CrossRef]
  50. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007). [CrossRef]
  51. D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18, 17958–17966 (2010). [CrossRef]
  52. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011). [CrossRef]
  53. J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011). [CrossRef]
  54. M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379–8393 (2011). [CrossRef]
  55. X. Zuo and Z. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett. 36, 2946–2948 (2011). [CrossRef]
  56. T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013). [CrossRef]
  57. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A 11, 114001 (2009). [CrossRef]
  58. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011). [CrossRef]
  59. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  60. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008). [CrossRef]
  61. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008). [CrossRef]
  62. J. Dintinger and O. J. F. Martin, “Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness,” Opt. Express 17, 2364–2374 (2009). [CrossRef]
  63. Z. Pan, J. Guo, R. Soref, W. Buchwald, and G. Sun, “Mode properties of flat-top silver nanoridge surface plasmon waveguides,” J. Opt. Soc. Am. B 29, 340–345 (2012). [CrossRef]
  64. E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009). [CrossRef]
  65. G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008). [CrossRef]
  66. Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011). [CrossRef]
  67. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited