OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 23 — Aug. 10, 2013
  • pp: 5803–5815

High efficiency coupling of light from a ridge to a photonic crystal waveguide

Murtaza Askari and Ali Adibi  »View Author Affiliations


Applied Optics, Vol. 52, Issue 23, pp. 5803-5815 (2013)
http://dx.doi.org/10.1364/AO.52.005803


View Full Text Article

Enhanced HTML    Acrobat PDF (1504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present theoretical and experimental demonstration of two designs to achieve group velocity insensitive coupling of light from a ridge waveguide to a photonic crystal waveguide. We demonstrate an average improvement of 62% in coupling to low group velocity modes and an average coupling enhancement of 11.5% at large group velocities.

© 2013 Optical Society of America

OCIS Codes
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: April 5, 2013
Revised Manuscript: July 18, 2013
Manuscript Accepted: July 19, 2013
Published: August 8, 2013

Citation
Murtaza Askari and Ali Adibi, "High efficiency coupling of light from a ridge to a photonic crystal waveguide," Appl. Opt. 52, 5803-5815 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-23-5803


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  4. M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensor,” Proc. SPIE 7946, 794614 (2011).
  5. J. McMillan, X. Yang, N. Panoiu, R. Osgood, and C. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31, 1235–1237 (2006). [CrossRef]
  6. A. Petrov and M. Eich, “Dispersion compensation with photonic crystal line-defect waveguides,” IEEE J. Select. Areas Commun. 23, 1396–1401 (2005). [CrossRef]
  7. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008). [CrossRef]
  8. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006). [CrossRef]
  9. M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004). [CrossRef]
  10. Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.
  11. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006). [CrossRef]
  12. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007). [CrossRef]
  13. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003). [CrossRef]
  14. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef]
  15. M. Gnan, I. Ntakis, P. Pottier, R. de La Rue, and P. Bassi, “Systematic investigation of misalignment effects at junctions between feeder waveguide and photonic crystal channel waveguide,” J. Opt. Netw. 6, 90–101 (2007). [CrossRef]
  16. P. Bienstman, S. Assefa, S. Johnson, J. Joannopoulos, G. Petrich, and L. Kolodziejski, “Taper structures for coupling into photonic crystal slab waveguides,” J. Opt. Soc. Am. B 20, 1817–1821 (2003). [CrossRef]
  17. A. Talneau, P. Lalanne, M. Agio, and C. Soukoulis, “Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett. 27, 1522–1524 (2002). [CrossRef]
  18. S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]
  19. C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010). [CrossRef]
  20. L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007). [CrossRef]
  21. N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, “High transmission recovery of slow light in a photonic crystal waveguide using a hetero group velocity waveguide,” Opt. Express 15, 7974–7983 (2007). [CrossRef]
  22. Y. Vlasov and S. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006). [CrossRef]
  23. M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008). [CrossRef]
  24. C. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  25. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  26. M. Askari, B. Momeni, C. M. Reinke, and A. Adibi, “Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals,” Appl. Opt. 50, 1266–1271 (2011). [CrossRef]
  27. D. Merewether, R. Fisher, and F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980). [CrossRef]
  28. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 2005).
  29. M. Askari and A. Adibi, “Systematically designed PCW bends with very large bandwith and high transmission: an experimental demonstration,” IEEE Photon. Technol. Lett. 24, 2250–2253 (2012). [CrossRef]
  30. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited