OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 23 — Aug. 10, 2013
  • pp: 5851–5855

Asymmetric design of photonic crystal surface-emitting lasers with low-threshold characteristics

Chih-Tsang Hung, Tsung-Lin Ho, and Tien-Chang Lu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 23, pp. 5851-5855 (2013)
http://dx.doi.org/10.1364/AO.52.005851


View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present AlGaAs-InGaAs multiquantum wells photonic crystal surface-emitting lasers by using the transfer matrix method and coupled wave method to achieve a low-threshold operation. The extremely low-threshold gain is achieved by adopting an asymmetric cladding layer design to enhance both of the vertical optical confinement factors for the quantum wells and photonic crystal (PC). By modifying the composition of the AlGaAs layer to raise the refractive index in the p-type cladding, optical field distribution will obviously be shifted to the p side. Hence, it results in a significant coupling enhancement between the optical mode profile and the PC layer. The optimized value of the vertically optical confinement factor of the PC layer is 13.94%, and the corresponding threshold gain can be as low as 19.45cm1.

© 2013 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 29, 2013
Revised Manuscript: July 7, 2013
Manuscript Accepted: July 12, 2013
Published: August 9, 2013

Citation
Chih-Tsang Hung, Tsung-Lin Ho, and Tien-Chang Lu, "Asymmetric design of photonic crystal surface-emitting lasers with low-threshold characteristics," Appl. Opt. 52, 5851-5855 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-23-5851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999). [CrossRef]
  2. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001). [CrossRef]
  3. H. Y. Ryu, S. H. Kwon, Y. J. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002). [CrossRef]
  4. G. A. Turnbull, P. Andrew, W. L. Barns, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313–315 (2003). [CrossRef]
  5. T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008). [CrossRef]
  6. T. C. Lu, S. W. Chen, T. T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008). [CrossRef]
  7. S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010). [CrossRef]
  8. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006). [CrossRef]
  9. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002). [CrossRef]
  10. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13, 2869–2880 (2005). [CrossRef]
  11. I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39, 689–700 (2003). [CrossRef]
  12. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  13. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46, 788–795 (2010). [CrossRef]
  14. C. T. Hung, Y. C. Syu, T. T. Wu, and T. C. Lu, “Design of low-threshold photonic crystal surface-emitting lasers,” IEEE Photon. Technol. Lett. 24, 866–868 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited