OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 24 — Aug. 20, 2013
  • pp: 5880–5887

Target-oriented design method for ultrabroadband single-mode triple-clad fibers

Ye Heng Wang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 24, pp. 5880-5887 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many inherent troubles from holey fiber technology are avoided according to leakage losses from the endlessly single-mode (ESM) property. The target-oriented design method (TODM) brings the potentialities of triple-clad fibers (TCFs) with arbitrarily available structure and performance into full play in transmission performance, because of the scalar wave equation combined with infinitesimal calculus of fiber performance. TCF with modified total internal reflection guidance optimized by TODM under the tolerance Δh16% has an ultrabroadband single-mode property similar to the ESM property of solid-core microstructured nonzero dispersion shifted fibers without tolerance and optimal structure to avoid higher-order modes and to reduce macro-bending loss.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 29, 2013
Manuscript Accepted: July 8, 2013
Published: August 12, 2013

Ye Heng Wang, "Target-oriented design method for ultrabroadband single-mode triple-clad fibers," Appl. Opt. 52, 5880-5887 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fibers,” Opt. Lett. 22, 961–963 (1997). [CrossRef]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef]
  4. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003). [CrossRef]
  5. F. Poletti, E. R. N. Fokoua, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, J. R. Hayes, and D. Richardson, “Hollow core photonic bandgap fibers for telecommunications: opportunities and potential issues,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OTh1H3.
  6. J. Knight, “Microstructured optical fibers: making fibers better by leaving bits out,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuJ4.
  7. D. Ghosh, S. Roy, M. Pal, S. Bandyopadhyay, and S. Bhadra, “Modeling of microstructured nonzero dispersion shifted optical fibers with ultralow dispersion slope,” J. Opt. Soc. Am. B 26, 337–345 (2009). [CrossRef]
  8. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728–3736 (2005). [CrossRef]
  9. V. Rastogi and K. S. Chiang, “Holey optical fiber with circularly distributed by the radial effective-index method,” Opt. Lett. 28, 2449–2451 (2003). [CrossRef]
  10. P. R. Watekar, S. Ju, and W.-T. Han, “Near zero bending loss in a double-trenched bend insensitive optical fiber at 1550 nm,” Opt. Express 17, 20155–20166 (2009). [CrossRef]
  11. M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP10.
  12. H. Etzkom and W. E. Heinlein, “Low-dispersion single-mode silica fiber with undoped core and three F-doped claddings,” Electron. Lett. 20, 423–424 (1984). [CrossRef]
  13. J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978). [CrossRef]
  14. H. Etzkorn and T. Heun, “Highly accurate numerical method for determination of propagation characteristics,” Opt. Quantum Electron. 18, 1–3 (1986). [CrossRef]
  15. S. Kawakami and S. Nishida, “Anomalous dispersion of new doubly clad optical fiber,” Electron. Lett. 10, 38–40 (1974). [CrossRef]
  16. B. J. Ainsile and C. R. Day, “Single mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4, 966–979 (1986). [CrossRef]
  17. P. L. Francois, F. Alard, J. F. Bayon, and B. Rose, “Multimode nature of quadruple-clad fibers,” Electron. Lett. 20, 37–38 (1984). [CrossRef]
  18. P. R. Watekar, S. Ju, and W. T. Han, “Single-mode optical fiber design with wide-band ultra low bending loss for FTTH application,” Opt. Express 16, 1180–1185 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited