OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 24 — Aug. 20, 2013
  • pp: 6074–6080

Selective reflection technique as a probe to monitor the growth of metallic thin film on dielectric surfaces

Weliton Soares Martins, Marcos Oriá, Martine Chevrollier, and Thierry Passerat de Silans  »View Author Affiliations

Applied Optics, Vol. 52, Issue 24, pp. 6074-6080 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Controlling thin film formation is technologically challenging. The knowledge of physical properties of the film and of the atoms in the surface vicinity can help improve control over the film growth. We investigate the use of the well-established selective reflection technique to probe the thin film during its growth, simultaneously monitoring the film thickness, the atom–surface van der Waals interaction, and the vapor properties in the surface vicinity.

© 2013 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(240.0310) Optics at surfaces : Thin films
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:
Optics at Surfaces

Original Manuscript: May 6, 2013
Revised Manuscript: July 28, 2013
Manuscript Accepted: July 29, 2013
Published: August 20, 2013

Weliton Soares Martins, Marcos Oriá, Martine Chevrollier, and Thierry Passerat de Silans, "Selective reflection technique as a probe to monitor the growth of metallic thin film on dielectric surfaces," Appl. Opt. 52, 6074-6080 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. G. Craighead, R. E. Howard, L. D. Jackel, and P. M. Mankiewich, “10 nm linewidth electron beam lithography on GsAs,” Appl. Phys. Lett. 42, 38–40 (1983). [CrossRef]
  2. W. Chen and H. Ahmed, “Fabrication of 5–7 nm wide etched line in silicon using 100 keV electron beam lithography and polymethylmethacrylate resist,” Appl. Phys. Lett. 62, 1499–1501 (1993). [CrossRef]
  3. V. Bouchiat and D. Esteve, “Liftoff lithography using an atomic force microscope,” Appl. Phys. Lett. 69, 3098–3100 (1996). [CrossRef]
  4. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000). [CrossRef]
  5. T. Schumm, S. Hofferberth, L. M. Andersson, D. Wildemurth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005). [CrossRef]
  6. J. M. McGuirk, D. M. Harber, J. M. Obrecht, and E. A. Cornell, “Alkali–metal adsorbate polarization on conducting and insulating surfaces probed with Bose–Einstein condensates,” Phys. Rev. A 69, 062905 (2004). [CrossRef]
  7. V. G. Bordo and H.-G. Rubahn, “Nonlinear evanescent wave spectroscopies: a close look at the gas-solid interface,” J. Phys. 19, 10–19 (2005). [CrossRef]
  8. T. Passerat de Silans, B. Farias, M. Oriá, and M. Chevrollier, “Laser-induced quantum adsorption of neutral atoms in dielectric surfaces,” Appl. Phys. B 82, 367–371 (2006). [CrossRef]
  9. V. G. Bordo and H.-G. Rubahn, “Laser-controlled adsorption of Na atoms in evanescent wave spectroscopy,” Opt. Express 4, 59–66 (1999). [CrossRef]
  10. D. Meschede and H. Metcalf, “Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces,” J. Phys. D 36, R17–R18 (2003). [CrossRef]
  11. A. E. Afanasiev, P. N. Melentiev, and V. I. Balykin, “Laser-induced quantum adsorption of atoms on a surface,” JETP Lett. 86, 172–177 (2007). [CrossRef]
  12. A. Burchianti, A. Boge, C. Marinelli, E. Mariotti, and L. Moi, “Light-induced atomic desorption and related phenomena,” Phys. Scripta T135014012 (2009). [CrossRef]
  13. E. Proehl, R. Nitche, T. Dienel, K. Leo, and T. Fritz, “In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different subtrates,” Phys. Rev. B 71, 016207 (2005). [CrossRef]
  14. M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, “Spectral observation of surface-induced van der Waals attraction on atomic vapour,” Europhys. Lett. 14, 527–532 (1991). [CrossRef]
  15. M. Chevrollier, M. Fichet, M. Oriá, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II 2, 631–657 (1992). [CrossRef]
  16. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999). [CrossRef]
  17. M.-P. Gorza and M. Ducloy, “Van der Waals interactions between atoms and dispersive surfaces at finite temperature,” Eur. Phys. J. D 40, 343–356 (2006). [CrossRef]
  18. A. M. Akul’shin, V. L. Velichanskĭĭ, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, “Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium,” JETP Lett. 36, 303–307 (1983).
  19. V. A. Sautenkov, “Line shapes of atomic transitions in excited dense gas,” Laser Phys. Lett. 8, 771–781 (2011). [CrossRef]
  20. T. A. Vartanyan and F. Träger, “Line shapes of resonances recorded in selective reflection: influence of an antireflection coating,” Opt. Commun. 110, 315–320 (1994). [CrossRef]
  21. M. Chevrollier, M. Oriá, J. G. de Souza, D. Bloch, M. Fichet, and M. Ducloy, “Selective reflection spectroscopy of a resonant vapor at the interface with a metallic layer,” Phys. Rev. E 63, 046610 (2001). [CrossRef]
  22. M. Ducloy and M. Fichet, “General theory of frequency modulated selective reflection: influence of atom surface interactions,” J. Phys. II 1, 1429–1446 (1991). [CrossRef]
  23. S. G. Tomlin, “Optical reflection and transmission formulae for thin films,” J. Phys. D 1, 1667–1671 (1968). [CrossRef]
  24. Notice that part of the He–Ne laser might be absorbed by Cs2 formed by three-atom collisions at those densities. Since the atomic density is not modified during the experiment, the Cs2 absorption does not influence the thickness measurement.
  25. T. Inagaki and E. T. Arakawa, “Cesium(Cs),” in Handbook of Optical Constants of Solids, E. P. Palik, ed. (Academic, 1988), pp. 341–350.
  26. A. M. Bonch-Bruevich, T. A. Vartanyan, Y. N. Maksimov, S. G. Przhibel’skiĭ, and V. V. Khromov, “Adsorption of cesium atoms at structural defects on sapphire surfaces,” JETP 85, 200–204 (1997). [CrossRef]
  27. M. Brause, J. Günster, T. Mayer, B. Braun, V. Puchin, W. Maus-Friedrichs, and V. Kempter, “Cs adsorption on oxide films (Al2O3, MgO, SiO2),” Surf. Sci. 383, 216–225 (1997). [CrossRef]
  28. F. Balzer, S. D. Jett, and H.-G. Rubahn, “Alkali cluster films on insulating substrates: comparison between scanning force microscopy and extinction data,” Chem. Phys. Lett. 297, 273–280 (1998). [CrossRef]
  29. M. Rasigni and G. Rasigni, “Anomalies of the optical properties of thin lithium layers and their relation to similar anomalies observed with other alkali metals,” J. Opt. Soc. Am. 63, 775–785 (1973). [CrossRef]
  30. A. M. Bonch-Bruevich, T. A. Vartanyan, N. B. Leonov, S. G. Przhibel’skiœ, and V. V. Khromov, “Optical method for measuring structural parameters of island films,” Opt. Spectrosc. 89, 402–407 (2000). [CrossRef]
  31. A. Laliotis, I. Maurin, M. Fichet, D. Bloch, M. Ducloy, N. Balasanyan, A. Sarkisyan, and D. Sarkisyan, “Selective reflection spectroscopy at the interface between a calcium fluoride window and Cs vapour,” Appl. Phys. B 90, 415–420 (2008). [CrossRef]
  32. P. C. de S. Segundo, I. Hamdi, M. Fichet, D. Bloch, and M. Ducloy, “Selective reflection spectroscopy on the UV third-resonance line of Cs: simultaneous probing of a van der Waals atom-surface interaction sensitive to far IR couplings and interatomic collisions,” Laser Phys. 17, 983–992 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited