OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 25 — Sep. 1, 2013
  • pp: 6131–6137

All-optical controlled switching in centrally coupled circular array of nonlinear optical fibers

Sara Tofighi and Ali Reza Bahrampour  »View Author Affiliations

Applied Optics, Vol. 52, Issue 25, pp. 6131-6137 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that, in a nonlinear centrally coupled circular array of evanescently coupled fibers, the coupling dynamics of a weak signal beam can be efficiently influenced by a high-power control beam that induces nonlinear defects. When the intense control beam is launched into the central core and one core in the periphery, then localized solitons are formed and cause the fibers with induced defects (defected fibers) to decouple from the other array elements. In the presence of a high-intensity control beam, the propagation of weak signal is restricted to the defected optical fibers. The weak signal periodically couples between the induced defects. This oscillatory behavior depends on the sign of the (Kerr-type) nonlinearity and the initial phase difference between the control fields injected to the central and one of the peripheral fibers. This all-optical network has the advantage of routing and switching the weak signal field in a controlled way by adjusting the parameters of intense control field.

© 2013 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 21, 2013
Manuscript Accepted: July 22, 2013
Published: August 22, 2013

Sara Tofighi and Ali Reza Bahrampour, "All-optical controlled switching in centrally coupled circular array of nonlinear optical fibers," Appl. Opt. 52, 6131-6137 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Scott and M. Tabor, “Davydov solitons in polypeptides,” Philos. Trans. R. Soc. London 315, 423–436 (1985). [CrossRef]
  2. A. S. Davydov, “The theory of contraction of proteins under their excitation,” J. Theor. Biol. 38, 559–569 (1973). [CrossRef]
  3. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1698–1701 (1979). [CrossRef]
  4. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18, 11117–11122 (2010). [CrossRef]
  5. M. P. Castanier and C. Pierre, “Individual and interactive mechanisms for localization and dissipation in a mono-coupled nearly-periodic structure,” J. Sound Vib. 168, 479–505 (1993). [CrossRef]
  6. A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001). [CrossRef]
  7. Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, and M. K. Oberthaler, “Nonlinear self-trapping of matter waves in periodic potentials,” Phys. Rev. Lett. 94, 020403 (2005). [CrossRef]
  8. P. Marqui, J. M. Bilbault, and M. Remoissenet, “Observation of nonlinear localized modes in an electrical lattice,” Phys. Rev. E 51, 6127–6133 (1995). [CrossRef]
  9. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003). [CrossRef]
  10. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assantoc, M. Segevd, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008). [CrossRef]
  11. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep. 518, 1–79 (2012). [CrossRef]
  12. D. N. Christodoulides and E. D. Eugenieva, “Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays,” Phys. Rev. Lett. 87, 233901 (2001). [CrossRef]
  13. T. Pertsch, R. Iwanow, R. Schiek, G. I. Stegeman, U. Peschel, F. Lederer, Y. H. Min, and W. Sohler, “Spatial ultrafast switching and frequency conversion in lithium niobate waveguide arrays,” Opt. Lett. 30, 177–179 (2005). [CrossRef]
  14. R. Keil, M. Heinrich, F. Dreisow, Th. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011). [CrossRef]
  15. C. Schmidt-Hattenberger, U. Trutschel, and F. Lederer, “Nonlinear switching in multiple-core couplers,” Opt. Lett. 16, 294–296 (1991). [CrossRef]
  16. O. Bang and P. D. Miller, “Exploiting discreteness for switching in waveguide arrays,” Opt. Lett. 21, 1105–1107 (1996). [CrossRef]
  17. Y. S Kivshar and G. P. Agrawal, Optical Solitons (Academic, 2003).
  18. W. Królikowski, U. Trutschel, M. Cronin-Golomb, and C. Schmidt-Hattenberger, “Soliton-like optical switching in a circular fiber array,” Opt. Lett. 19, 320–322 (1994). [CrossRef]
  19. K. Hizaidis, S. Droulias, I. Tsopelas, N. K. Efremidis, and D. N. Christodoulides, “Localized modes in a circular array of coupled nonlinear optical waveguides,” Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 1739–1752 (2006). [CrossRef]
  20. C. Schmidt-Hattenberger, R. Muschall, U. Trustschel, and F. Lederer, “A 1×7 fibre coupler with Kerr nonlinearity,” Opt. Quantum Electron. 25, 185–193 (1993). [CrossRef]
  21. S. Longhi, “Light transfer control and diffraction management in circular fibre waveguide arrays,” J. Phys. B 40, 4477–4492 (2007). [CrossRef]
  22. D. J. Jones and L. A. Molter, “Generalized switching properties of three-guide circular fiber arrays using coupled-mode analysis,” IEEE J. Quantum Electron. 30, 119–125 (1994). [CrossRef]
  23. J. Hudgings, L. Molter, and M. Dutta, “Design and modeling of passive optical switches and power dividers using non-planar coupled fiber arrays,” IEEE J. Quantum Electron. 36, 1438–1444 (2000). [CrossRef]
  24. K. Hizanidis, S. Droulias, I. Tsopelas, N. K. Efremidis, and D. N. Christodoulides, “Centrally coupled circular array of optical waveguides: the existence of stable steady-state continuous waves and breathing modes,” Phys. Scr. T107, 13–19 (2004). [CrossRef]
  25. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794–796 (1988). [CrossRef]
  26. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998). [CrossRef]
  27. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003). [CrossRef]
  28. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580–1583 (1982). [CrossRef]
  29. B. Daino, G. Gregori, and S. Wabnitz, “Stability analysis of nonlinear coherent coupling,” J. Appl. Phys. 58, 4512–4514 (1985). [CrossRef]
  30. G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, and S. Longhi, “Visualization of coherent destruction of tunneling in an optical double well system,” Phys. Rev. Lett. 98, 263601 (2007). [CrossRef]
  31. A. Szameit, Y. V. Kartashov, M. Heinrich, F. Dreisow, R. Keil, S. Nolte, A. Tnnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Nonlinearity-induced broadening of resonances in dynamically modulated couplers,” Opt. Lett. 34, 2700–2702 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited