OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 25 — Sep. 1, 2013
  • pp: 6179–6184

Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals

Yonatan Stern, Kun Zhong, Thomas Schneider, Yossef Ben-Ezra, Ru Zhang, Moshe Tur, and Avi Zadok  »View Author Affiliations

Applied Optics, Vol. 52, Issue 25, pp. 6179-6184 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (524 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical spectral analysis of closely spaced, subcarrier multiplexed fiber-optic transmission is performed, based on stimulated Brillouin scattering (SBS). The Brillouin gain window of a single, continuous-wave pump is scanned across the spectral extent of the signal under test. The polarization pulling effect associated with SBS is employed to improve the rejection ratio of the analysis by an order of magnitude. Ten tones, spaced by only 10 MHz and each carrying random-sequence on–off keying data, are clearly resolved. The measurement identifies the absence of a single subcarrier, directly in the optical domain. The results are applicable to the monitoring of optical orthogonal frequency domain multiplexing and radio over fiber transmission.

© 2013 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(070.4790) Fourier optics and signal processing : Spectrum analysis
(290.5900) Scattering : Scattering, stimulated Brillouin
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 28, 2013
Manuscript Accepted: July 27, 2013
Published: August 23, 2013

Yonatan Stern, Kun Zhong, Thomas Schneider, Yossef Ben-Ezra, Ru Zhang, Moshe Tur, and Avi Zadok, "Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals," Appl. Opt. 52, 6179-6184 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27, 189–204 (2009). [CrossRef]
  2. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25, 131–138 (2007). [CrossRef]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007). [CrossRef]
  4. D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14, 355–357 (2002). [CrossRef]
  5. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010). [CrossRef]
  6. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  8. A. Boh Ruffin, “Stimulated Brillouin scattering: an overview of measurements, system impairments, and applications,” in Technical Digest: Symposium on Optical Fiber Measurements (2004), pp. 23–28.
  9. D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982). [CrossRef]
  10. A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007). [CrossRef]
  11. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006). [CrossRef]
  12. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, pp. 352–354 (1990). [CrossRef]
  13. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6, L1–L5 (2012). [CrossRef]
  14. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011). [CrossRef]
  15. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991). [CrossRef]
  16. S. Loranger, V. L. Iezzi, and R. Kashyap, “Demonstration of an ultra-high frequency picosecond pulse generator using an SBS frequency comb and self phase-locking,” Opt. Express 20, 19455–19462 (2012). [CrossRef]
  17. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006). [CrossRef]
  18. Y. Antman, N. Levanon, and A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37, 5259–5261 (2012). [CrossRef]
  19. T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41, 1234–1235 (2005). [CrossRef]
  20. J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005). [CrossRef]
  21. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1118–1120 (2011). [CrossRef]
  22. A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for ultra-high resolution Brillouin based spectroscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.63.
  23. M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994). [CrossRef]
  24. A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008). [CrossRef]
  25. A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008). [CrossRef]
  26. S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012). [CrossRef]
  27. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19, 21945–21955 (2011). [CrossRef]
  28. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited