OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 25 — Sep. 1, 2013
  • pp: 6272–6277

Stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system

Xinlong Chen, Guanghui Hao, Benkang Chang, Yijun Zhang, Jing Zhao, Yuan Xu, and Muchun Jin  »View Author Affiliations

Applied Optics, Vol. 52, Issue 25, pp. 6272-6277 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (435 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system has been investigated. The degraded photocurrents of the Cs/O activated Ga0.37Al0.63As photocathodes under illumination with different intensity are recorded in real time, and the quantum efficiencies are measured after the degradation. The degraded quantum efficiencies of the photocathode under no illumination are measured at regular intervals. Multiple activations are performed on the Ga0.37Al0.63As photocathode, after that the quantum efficiencies and the degraded photocurrents are measured. The results indicate that the lifetime of the Ga0.37Al0.63As photocathode increases as the intensity of illumination decreases, and is longer than that of the GaAs photocathode in the case of no illumination. Besides, the Ga0.37Al0.63As photocathode performed after the second activation would obtain optimal stability.

© 2013 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(310.6870) Thin films : Thin films, other properties
(250.0040) Optoelectronics : Detectors

ToC Category:

Original Manuscript: May 17, 2013
Revised Manuscript: July 24, 2013
Manuscript Accepted: July 31, 2013
Published: August 26, 2013

Xinlong Chen, Guanghui Hao, Benkang Chang, Yijun Zhang, Jing Zhao, Yuan Xu, and Muchun Jin, "Stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system," Appl. Opt. 52, 6272-6277 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004). [CrossRef]
  2. Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010). [CrossRef]
  3. J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45, 054001 (2006). [CrossRef]
  4. T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006). [CrossRef]
  5. N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007). [CrossRef]
  6. X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013). [CrossRef]
  7. R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0∼x∼0.3),” J. Appl. Phys. 45, 3896–3898 (1974). [CrossRef]
  8. X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012). [CrossRef]
  9. T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009). [CrossRef]
  10. D. Durek, F. Frommberger, T. Reichelt, and M. Westermann, “Degradation of a gallium–arsenide photoemitting NEA surface by water vapour,” Appl. Surf. Sci. 143, 319–322 (1999). [CrossRef]
  11. M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011). [CrossRef]
  12. J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008). [CrossRef]
  13. F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003). [CrossRef]
  14. R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994). [CrossRef]
  15. R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994). [CrossRef]
  16. N. Chanlek, “Quantum efficiency lifetime studies using the photocathode preparation experimental facility developed for the Alice accelerator,” Ph.D. thesis (Manchester University, 2011), p. 61.
  17. B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003). [CrossRef]
  18. J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007). [CrossRef]
  19. Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010). [CrossRef]
  20. Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008). [CrossRef]
  21. C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces,” J. Appl. Phys. 54, 1413–1422 (1983). [CrossRef]
  22. C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs. Identification of the multiplet structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited