OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 25 — Sep. 1, 2013
  • pp: 6309–6315

Multiple frequency bands of square split resonant rings and metal wire metamaterial

Peng Gao, Chunmin Zhang, Jingjing Ai, Yongqiang Kang, and Gang Li  »View Author Affiliations

Applied Optics, Vol. 52, Issue 25, pp. 6309-6315 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents experimental measurements of two square split resonant ring and metal wire (SSRR-MW) samples with different cell sizes at microwave frequencies. The geometrical sizes of the metamaterial cells are found to play an important role in the resonant frequency. Cells with different geometrical sizes are chosen to stack into a two-layer or three-layer metamaterial unit to realize the multiple negative passbands. The effective parameters of three separate SSRR-MW models (a one-layer unit, a two-layer unit, and a three-layer unit) are retrieved from the simulation data. The composed models exhibit two or three negative bands by overlapping the passbands of original cells and broadening the overall bandwidth. The recovered parameters show good agreement with the theoretical analysis.

© 2013 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.4670) Materials : Optical materials
(160.3918) Materials : Metamaterials

ToC Category:
Optical Devices

Original Manuscript: May 6, 2013
Revised Manuscript: July 26, 2013
Manuscript Accepted: July 31, 2013
Published: August 28, 2013

Peng Gao, Chunmin Zhang, Jingjing Ai, Yongqiang Kang, and Gang Li, "Multiple frequency bands of square split resonant rings and metal wire metamaterial," Appl. Opt. 52, 6309-6315 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Shelby, D. R. Smith, and S. Schulz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  2. P. Markos and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E 65, 036622 (2002). [CrossRef]
  3. X. F. Zhang, P. F. Guan, and X. L. Dong, “Transform between the permeability and permittivity in the close-packed Ni nanoparticles,” Appl. Phys. Lett. 97, 033107 (2010). [CrossRef]
  4. C. D. Moss, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Numerical studies of left-handed metamaterials,” Prog. Electromagn. Res. 35, 315–334 (2002). [CrossRef]
  5. L. X. Ran, J. T. Huangfu, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Beam shifting experiment for the characterization of left-handed properties,” J. Appl. Phys. 95, 2238–2241 (2004). [CrossRef]
  6. J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns,” Appl. Phys. Lett. 84, 1537–1539 (2004). [CrossRef]
  7. H. Chen, D. Wang, J. Huangpu, Q. Jiang, and J. A. Kong, “Metamaterial with randomized patterns for negative refraction of electromagnetic wave,” Appl. Phys. Lett. 88, 031908 (2006). [CrossRef]
  8. H. S. Chen, L. X. Ran, J. T. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006). [CrossRef]
  9. C. M. Zhang, P. Gao, M. Z. Sun, and T. K. Mu, “Analysis of the resonant frequency of the octagonal split resonant rings with metal wires,” Appl. Opt. 49, 5638–5644 (2010). [CrossRef]
  10. C. R. Simovskia and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003). [CrossRef]
  11. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]
  12. Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers–Kronig relationship,” IEEE Trans. Microwave Theory Tech. 58, 2646–2653 (2010). [CrossRef]
  13. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  14. P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003). [CrossRef]
  15. X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]
  16. D. R. Smith and S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. E 65, 195104 (2002).
  17. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, S. M. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett. 32, 1671–1673 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited