OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 25 — Sep. 1, 2013
  • pp: 6322–6331

Holographic grating stability: influence of 4,4′-azobis (4-cyanopentanoic acid) on various spatial frequencies

E. Fernández, R. Fuentes, M. Ortuño, A. Beléndez, and I. Pascual  »View Author Affiliations


Applied Optics, Vol. 52, Issue 25, pp. 6322-6331 (2013)
http://dx.doi.org/10.1364/AO.52.006322


View Full Text Article

Enhanced HTML    Acrobat PDF (796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents the results obtained when holographic gratings were stored with a spatial frequency of 954 and 2663lines/mm in transmission geometry and 4600lines/mm in reflection geometry in a polyvinyl alcohol/acrylamide-based material. Photopolymers are materials that give good results at low frequencies, but their diffraction efficiency (DE) decreases at high frequencies. A chain transfer agent, 4,4-azobis (4-cyanopentanoic acid) (ACPA) was incorporated in the material composition to improve spatial resolution. Furthermore, a curing process was applied to the stored gratings in order to maintain the DE stable over time. The DE and shrinkage for symmetric holographic transmission and reflection gratings were measured to evaluate their quality and quantify the improvement produced by ACPA.

© 2013 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.5470) Materials : Polymers

ToC Category:
Holography

History
Original Manuscript: May 9, 2013
Revised Manuscript: July 9, 2013
Manuscript Accepted: August 3, 2013
Published: August 29, 2013

Citation
E. Fernández, R. Fuentes, M. Ortuño, A. Beléndez, and I. Pascual, "Holographic grating stability: influence of 4,4′-azobis (4-cyanopentanoic acid) on various spatial frequencies," Appl. Opt. 52, 6322-6331 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-25-6322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368–5373 (2007). [CrossRef]
  2. E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448–4456 (2008). [CrossRef]
  3. L. Dhar, K. Curtis, and T. Facke, “Holo graphic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008). [CrossRef]
  4. D. Graham-Rowe, “The drive for holography,” Nat. Photonics 1, 197–200 (2007). [CrossRef]
  5. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  6. V. A. Barachevskii, “Photopolymerizable recording media for three-dimensional holographic optical memory,” High Energy Chem. 40, 131–141 (2006). [CrossRef]
  7. R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).
  8. S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281, 559–566 (2008). [CrossRef]
  9. I. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004). [CrossRef]
  10. S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006). [CrossRef]
  11. J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011). [CrossRef]
  12. R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010). [CrossRef]
  13. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008). [CrossRef]
  14. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B 139, 35–38 (2009). [CrossRef]
  15. M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013). [CrossRef]
  16. E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010). [CrossRef]
  17. M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008). [CrossRef]
  18. M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010). [CrossRef]
  19. S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004). [CrossRef]
  20. J. A. Jenney, “Holographic recording with photopolymers,” J. Opt. Soc. Am. 60, 1155–1161 (1970). [CrossRef]
  21. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  22. J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994). [CrossRef]
  23. L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006). [CrossRef]
  24. R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited