OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 25 — Sep. 1, 2013
  • pp: 6369–6382

Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm

Haris Riris, Michael Rodriguez, Graham R. Allan, William Hasselbrack, Jianping Mao, Mark Stephen, and James Abshire  »View Author Affiliations

Applied Optics, Vol. 52, Issue 25, pp. 6369-6382 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2025 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA’s Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled erbium-doped fiber amplifier and single photon-counting detector to measure oxygen absorption at 765 nm. Our results show good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km.

© 2013 Optical Society of America

OCIS Codes
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar
(300.1030) Spectroscopy : Absorption
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 26, 2013
Revised Manuscript: July 22, 2013
Manuscript Accepted: July 24, 2013
Published: August 30, 2013

Haris Riris, Michael Rodriguez, Graham R. Allan, William Hasselbrack, Jianping Mao, Mark Stephen, and James Abshire, "Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm," Appl. Opt. 52, 6369-6382 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “Intergovernmental Panel on Climate Change Report (IPCC),” 2007, http://www.ipcc.ch/index.htm .
  2. National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academic, 2007).
  3. “NASA ASCENDS Workshop,” http://cce.nasa.gov/ascends/index.htm .
  4. C. L. Korb and C. Y. Wang, “Differential absorption lidar technique for measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983). [CrossRef]
  5. K. J. Ritter, “A high resolution spectroscopic study of absorption line profiles in the A-Band of molecular oxygen,” Ph.D. dissertation (University of Maryland, 1986).
  6. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
  7. C. N. Flamant, G. K. Schwemmer, C. L. Korb, K. D. Evans, and S. P. Palm, “Pressure measurements using and airborne differential absorption lidar. Part I: analysis of the systematic error sources,” J. Atmos. Ocean. Technol. 16, 561–574 (1999). [CrossRef]
  8. M. Stephen, M. Krainak, H. Riris, and G. R. Allan, “Narrowband, tunable, frequency-doubled, erbium doped fiber-amplified transmitter,” Opt. Lett. 32, 2073–2075 (2007). [CrossRef]
  9. X. Sun and J. Abshire, “Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation,” Opt. Express 20, 21291–21304 (2012). [CrossRef]
  10. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102, 313–329 (2011). [CrossRef]
  11. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  12. R. Measures, Laser Remote Sensing (Wiley, 1984).
  13. J. B. Abshire, H. Riris, G. Allan, C. J. Weaver, J. Mao, X. X. Sun, W. E. Hasselbrack, R. S. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62B, 770–783 (2010).
  14. G. Ehret, C. Kiemel, W. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008). [CrossRef]
  15. W. B. Grant, “Effect of differential spectral reflectance on DIAL measurements using topographic targets,” Appl. Opt. 21, 2390–2394 (1982). [CrossRef]
  16. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. Discuss. 4, 3545–3592 (2011).
  17. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20, 15589–15609 (2012). [CrossRef]
  18. J. B. Abshire, H. Riris, C. J. Weaver, J. Mao, G. R. Allan, W. E. Hasselbrack, and E. V. Browel, “Airborne measurements of CO2 column absorption and range using a pulsed direct detection IPDA lidar,” Appl. Opt. 52, 4446–4461 (2013). [CrossRef]
  19. J. Humlicek, “Optimized computation of the Voigt and complex probability functions,” J. Quant. Spectrosc. Radiat. Transfer 27, 437–444 (1982).
  20. J. Liu, J. Lin, G. Huang, Y. Guo, and C. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B 18, 666–672 (2001). [CrossRef]
  21. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953). [CrossRef]
  22. H. Tran, C. Boulet, and J. M. Hartmann, “Line mixing and collision-induced absorption by oxygen in the A band: laboratory measurements, model, and tools for atmospheric spectra computations,” J. Geophys. Res. 111, D15210 (2006). [CrossRef]
  23. D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transfer 111, 2021–2036 (2010).
  24. D. A. Long and J. T. Hodges, “On spectroscopic models of the O2 A-band and their impact upon atmospheric retrievals,” J. Geophys. Res. 117, D12309 (2012). [CrossRef]
  25. A. Amediek, X. Sun, and J. B. Abshire, “Analysis of range measurements from a pulsed airborne CO2 integrated path differential absorption lidar,” IEEE Trans. Geosci. Remote Sens. 51, 2498–2504 (2013). [CrossRef]
  26. C. Rodgers, Inverse Methods for Atmospheric Soundings, Theory and Practice, Vol. 2 of Series on Atmospheric, Oceanic and Planetary Physics (World Scientific, 2000).
  27. S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus 62B, 759–769 (2010).
  28. S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2: applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995). [CrossRef]
  29. “Goddard Modeling and Assimilation Office,” http://gmao.gsfc.nasa.gov/ .
  30. A. Butz, S. Guerlet, O. Hasekamp, D. Schepers, A. Galli, I. Aben, C. Frankenberg, J.-M. Hartmann, H. Tran, A. Kuze, G. Keppel-Aleks, G. Toon, D. Wunch, P. Wennberg, N. Deutscher, D. Griffith, R. Macatangay, J. Messerschmidt, J. Notholt, and T. Warneke, “Toward accurate CO2 and CH4 observations from GOSAT,” Geophys. Res. Lett. 38, L14812 (2011). [CrossRef]
  31. D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm—Part II: global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
  32. D. P. Donovan, J. A. Whiteway, and A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993). [CrossRef]
  33. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  34. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985). [CrossRef]
  35. J. A. Silver, D. S. Bomse, and A. C. Stanton, “Diode laser measurements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991). [CrossRef]
  36. D. T. Cassidy and J. Reid, “Harmonic detection with tunable diode lasers-two-tone modulation,” Appl. Phys. B 29, 279–285 (1982). [CrossRef]
  37. P. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta Part A 60, 1685–1705 (2004).
  38. H. Riris, C. B. Carlisle, R. E. Warren, and D. E. Cooper, “Signal to noise ratio enhancement in frequency modulation spectrometers using digital signal processing,” Opt. Lett. 19, 144–146 (1994). [CrossRef]
  39. D. S. Bomse and D. J. Kane, “An adaptive singular value decomposition (SVD) algorithm for analysis of wavelength modulation spectra,” Appl. Phys. B 85, 461–466 (2006). [CrossRef]
  40. H. Riris, C. B. Carlisle, and R. E. Warren, “Kalman filtering of tunable diode laser spectrometer absorbance measurements,” Appl. Opt. 33, 5506–5508 (1994). [CrossRef]
  41. D. P. Leleux, R. Claps, W. Chen, F. K. Tittel, and T. L. Harman, “Applications of Kalman filtering to real-time trace gas concentration measurements,” Appl. Phys. B 74, 85–93 (2002).
  42. J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance,” Geophys. Res. Lett. 32, L21S02 (2005). [CrossRef]
  43. A. W. Yu, S. X. Li, M. A. Stephen, A. J. Martino, J. R. Chen, M. A. Krainak, S. Wu, H. Riris, J. B. Abshire, D. J. Harding, G. R. Allan, and K. Numata, “Spaceborne laser transmitters for remote sensing applications,” Proc. SPIE 7808, 780817 (2010). [CrossRef]
  44. W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26, 1214–1228 (2009).
  45. O. Reitebuch, “The spaceborne wind lidar mission ADM-Aeolus,” in Atmospheric Physics, Research Topics in Aerospace (Springer-Verlag, 2012), pp. 815–827.
  46. A. W. Yu, M. A. Krainak, D. J. Harding, J. B. Abshire, and X. Sun, “Topographic mapping from space,” Proc. SPIE 7467, 746702 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited