OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 25 — Sep. 1, 2013
  • pp: 6401–6410

Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity

Kuo Li, Tommy H. T. Chan, Man Hong Yau, Theanh Nguyen, David P. Thambiratnam, and Hwa Yaw Tam  »View Author Affiliations


Applied Optics, Vol. 52, Issue 25, pp. 6401-6410 (2013)
http://dx.doi.org/10.1364/AO.52.006401


View Full Text Article

Enhanced HTML    Acrobat PDF (3541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The first fiber Bragg grating (FBG) accelerometer using direct transverse forces is demonstrated by fixing the FBG by its two ends and placing a transversely moving inertial object at its middle. It is very sensitive because a lightly stretched FBG is more sensitive to transverse forces than axial forces. Its resonant frequency and static sensitivity are analyzed by the classic spring-mass theory, assuming the axial force changes little. The experiments show that the theory can be modified for cases where the assumption does not hold. The resonant frequency can be modified by a linear relationship experimentally achieved, and the static sensitivity by an alternative method proposed. The principles of the over-range protection and low cross axial sensitivity are achieved by limiting the movement of the FBG and were validated experimentally. The sensitivities 1.333 and 0.634nm/g were experimentally achieved by 5.29 and 2.83 gram inertial objects at 10 Hz from 0.1 to 0.4 g (g=9.8m/s2), respectively, and their resonant frequencies were around 25 Hz. Their theoretical static sensitivities and resonant frequencies found by the modifications are 1.188nm/g and 26.81 Hz for the 5.29 gram one and 0.784nm/g and 29.04 Hz for the 2.83 gram one, respectively.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 14, 2013
Revised Manuscript: July 9, 2013
Manuscript Accepted: July 30, 2013
Published: August 30, 2013

Citation
Kuo Li, Tommy H. T. Chan, Man Hong Yau, Theanh Nguyen, David P. Thambiratnam, and Hwa Yaw Tam, "Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity," Appl. Opt. 52, 6401-6410 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-25-6401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Graham-Rowe, “Sensors take the strain,” Nat. Photonics 1, 307–309 (2007). [CrossRef]
  2. M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2, 153–154 (2008). [CrossRef]
  3. A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19, 1991–1993 (2007). [CrossRef]
  4. Y. Zhang, S. Li, Z. Yin, B. Chen, H.-L. Cui, and J. Ning, “Fiber-Bragg-grating-based seismic geophone for oil/gas prospecting,” Opt. Eng. 45, 084404 (2006).
  5. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003). [CrossRef]
  6. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996). [CrossRef]
  7. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998). [CrossRef]
  8. S. R. K. Morikawa, A. S. Ribeiro, R. D. Regazzi, L. C. G. Valente, and A. M. B. Braga, “Triaxial Bragg grating accelerometer,” in OFS 2002: 15th Optical Fiber Sensors Conference, Technical Digest (2002), pp. 95–98.
  9. J. N. C. Baldwin, J. Kiddy, and T. Salter, “Review of fiber optic accelerometers,” in 23rd Conference and Exposition on Structural Dynamics 2005 (IMAC XXIII), Orlando, Florida, January 31–February 3, 2005.
  10. J. H. Zhang, X. G. Qiao, M. L. Hu, Z. Y. Feng, H. Gao, Y. Yang, and R. Zhou, “Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement,” Chin. Opt. Lett. 9, 090607 (2011). [CrossRef]
  11. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012). [CrossRef]
  12. Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber Bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12, 3000–3004 (2012). [CrossRef]
  13. P. F. C. Antunes, C. A. Marques, H. Varum, and P. S. Andre, “Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity,” IEEE Sens. J. 12, 2399–2406 (2012). [CrossRef]
  14. P. Antunes, H. Varum, and P. S. Andre, “Uniaxial fiber Bragg grating accelerometer system with temperature and cross axis insensitivity,” Measurement 44, 55–59 (2011). [CrossRef]
  15. Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
  16. N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A 173, 108–115 (2012). [CrossRef]
  17. J. Zhang, X. Qiao, M. Hu, Z. Feng, H. Gao, Y. Yang, and R. Zhou, “Proposal of metal bellows-based fiber Bragg grating accelerometer,” Chin. Opt. Lett. 9, 090606 (2011). [CrossRef]
  18. K. Li and Z. A. Zhou, “A high sensitive fiber Bragg grating strain sensor with automatic temperature compensation,” Chin. Opt. Lett. 7, 191–193 (2009). [CrossRef]
  19. Y. L. Yu, H. Y. Tam, W. H. Chung, and M. S. Demokan, “Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature,” Opt. Lett. 25, 1141–1143 (2000). [CrossRef]
  20. H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, “Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range,” J. Lightwave Technol. 29, 1714–1720 (2011). [CrossRef]
  21. R. Aneesh, M. Maharana, P. Munendhar, H. Y. Tam, and S. K. Khijwania, “Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability,” Appl. Opt. 50, E172–E176 (2011). [CrossRef]
  22. J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, “Fiber Bragg grating temperature sensor with controllable sensitivity,” Appl. Opt. 38, 2752–2754 (1999). [CrossRef]
  23. K. Li, Z. A. Zhou, and A. Liu, “A high sensitive fiber Bragg grating cryogenic temperature sensor,” Chin. Opt. Lett. 7, 121–123 (2009). [CrossRef]
  24. K. Li, M. H. Yau, T. H. T. Chan, D. Thambiratnam, and H. Y. Tam, “Fiber Bragg grating strain modulation based on nonlinear string transverse-force amplifier,” Opt. Lett. 38, 311–313 (2013). [CrossRef]
  25. P. L. Walter, “The history of the accelerometer,” J. Sound Vib. 31, 16–22 (1997).
  26. IMI Sensors, “Model 626B02,” www.imi-sensors.com/Industrial_Accelerometers/Low_Frequency/626B02.aspx .
  27. P. Touboul, B. Foulon, and E. Willemenot, “Electrostatic space accelerometers for present and future missions,” Acta Astronaut. 45, 605–617 (1999). [CrossRef]
  28. D. E. Weiss, “Design and application of accelerometers,” Proc. SESA (now SEM) (Addison-Wesley, 1947), Vol. IV, pp. 89–99.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited