OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 26 — Sep. 10, 2013
  • pp: 6428–6438

Tunable focusing of sine-azimuthal wavefront modulated cosh-Gaussian beams by one spiral optical vortex

Wen Wang, Dawei Zhang, Xiumin Gao, Ruijin Hong, and Songlin Zhuang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 26, pp. 6428-6438 (2013)
http://dx.doi.org/10.1364/AO.52.006428


View Full Text Article

Enhanced HTML    Acrobat PDF (1872 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical intensity distributions in the focal region play an important role in many optical systems. In this paper, the tunable focusing properties of linearly polarized hyperbolic-cosine-Gaussian beams with sine-azimuthal variation wavefront were investigated by adding a spiral optical vortex. It was found that the focal patterns can be altered very considerably by changing the charge number of the optical vortex under a different phase parameter that indicates the phase change frequency upon increasing the azimuthal angle. The symmetry of focal patterns also changes remarkably upon increasing the charge number. And some novel focal patterns may appear, including a multiple-peak array, wheel focal pattern, or swallow-tailed focal pattern.

© 2013 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 9, 2013
Revised Manuscript: July 24, 2013
Manuscript Accepted: July 24, 2013
Published: September 3, 2013

Citation
Wen Wang, Dawei Zhang, Xiumin Gao, Ruijin Hong, and Songlin Zhuang, "Tunable focusing of sine-azimuthal wavefront modulated cosh-Gaussian beams by one spiral optical vortex," Appl. Opt. 52, 6428-6438 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-26-6428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. W. Casperson, D. G. Hall, and A. A. Tovar, “Sinusoidal-Gaussian beams in complex optical systems,” J. Opt. Soc. Am. A 14, 3341–3348 (1997). [CrossRef]
  2. L. W. Casperson and A. A. Tovar, “Hermite-sinusoidal-Gaussian beams in complex optical systems,” J. Opt. Soc. Am. A 15, 954–961 (1998). [CrossRef]
  3. A. A. Tovar and L. W. Casperson, “Production and propagation of Hermite-sinusoidal-Gaussian laser beams,” J. Opt. Soc. Am. A 15, 2425–2432 (1998). [CrossRef]
  4. B. Lü, B. Zhang, and H. Ma, “Beam-propagation factor and mode-coherence coefficients of hyperbolic-cosine-Gaussian beams,” Opt. Lett. 24, 640–642 (1999). [CrossRef]
  5. H. T. Eyyuboğlu and Y. Baykal, “Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere,” Appl. Opt. 44, 976–983 (2005). [CrossRef]
  6. B. Lü, H. Ma, and B. Zhang, “Propagation properties of cosh-Gaussian beams,” Opt. Commun. 164, 165–170 (1999). [CrossRef]
  7. X. Chu, Y. Ni, and G. Zhou, “Propagation of cosh-Gaussian beams diffracted by a circular aperture in turbulent atmosphere,” Appl. Phys. B 87, 547–552 (2007). [CrossRef]
  8. H. Wang, C. Ding, Z. Zhao, Y. Zhang, and L. Pan, “Nonparaxial propagation of spatially and spectrally partially coherent electromagnetic cosh-Gaussian pulse beams,” Opt. Laser Technol. 44, 1800–1807 (2012). [CrossRef]
  9. Z. Hricha and A. Belafhal, “Focusing properties and focal shift in hyperbolic-cosine-Gaussian beams,” Opt. Commun. 253, 242–249 (2005). [CrossRef]
  10. X. Gao, “Focusing properties of the hyperbolic-cosine-Gaussian beam induced by phase plate,” Phys. Lett. A 360, 330–335 (2006). [CrossRef]
  11. X. Gao and J. Li, “Focal shift of apodized truncated hyperbolic-cosine-Gaussian beam,” Opt. Commun. 273, 21–27 (2007). [CrossRef]
  12. S. D. Patil, S. T. Navare, M. V. Takale, and M. B. Dongare, “Self-focusing of cosh-Gaussian laser beams in a parabolic medium with linear absorption,” Opt. Lasers Eng. 47, 604–606 (2009). [CrossRef]
  13. S. D. Patil, M. V. Takale, S. T. Navare, V. J. Fulari, and M. B. Dongare, “Relativistic self-focusing of cosh-Gaussian laser beams in a plasma,” Opt. Laser Technol. 44, 314–317 (2012). [CrossRef]
  14. T. S. Gill, R. Mahajan, and R. Kaur, “Self-focusing of cosh-Gaussian laser beam in a plasma with weakly relativistic ponderomotive regime,” Phys. Plasmas 18, 033110 (2011). [CrossRef]
  15. Y. C. Zhang, Y. J. Song, Z. R. Chen, J. H. Ji, and Z. X. Shi, “Virtual sources for a cosh-Gaussian beam,” Opt. Lett. 32, 292–294 (2007). [CrossRef]
  16. G. Zhou, “Propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere,” Opt. Express 19, 3945–3951 (2011). [CrossRef]
  17. H. T. Eyyuboğlu, “Scintillation behavior of cos, cosh and annular Gaussian beams in non-Kolmogorov turbulence,” Appl. Phys. B 108, 335–343 (2012). [CrossRef]
  18. Q. Tang, Y. Yu, and Q. Hu, “A new method to generate flattened Gaussian beam by incoherent combination of cosh Gaussian beams,” Chin. Opt. Lett. 05, 46–48 (2007).
  19. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Decay of high order optical vortices in anisotropic nonlinear optical media,” Phys. Rev. Lett. 78, 2108–2111 (1997). [CrossRef]
  20. P. D. Trapani, W. Chinaglia, S. Minardi, A. Piskarskas, and G. Valiulis, “Observation of quadratic optical vortex solitons,” Phys. Rev. Lett. 84, 3843–3846 (2000). [CrossRef]
  21. D. Neshev, A. Nepomnyashchy, and Y. Kivshar, “Nonlinear Aharonov–Bohm scattering by optical vortices,” Phys. Rev. Lett. 87, 043901 (2001). [CrossRef]
  22. F. S. Roux, “Evolution of optical vortex distributions in stochastic vortex fields,” Proc. SPIE 7950, 79500T (2011). [CrossRef]
  23. C.-F. Kuo and S.-C. Chu, “Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers,” Proc. SPIE 8637, 86370A (2013). [CrossRef]
  24. R. Talebzadeh, “Optical vortex bullets in inhomogeneous dispersive nonlinear fibers,” Opt. Eng. 51, 055003 (2012). [CrossRef]
  25. K. Yamane, Y. Toda, and R. Morita, “Generation of ultrashort optical vortex pulses using optical parametric amplification,” in CLEO Technical Digest (IEEE, 2012), paper JTu1K.4.
  26. A. Popiołek-Masajada, J. Masajada, and I. Augustyniak, “New scanning technique for optical vortex microscopy,” Proc. SPIE 8697, 86970Z (2012). [CrossRef]
  27. X. Gao, J. Wang, H. Gu, and S. Hu, “Focusing of hyperbolic-cosine-Gaussian beam with a non-spiral vortex,” Optik 120, 201–206 (2009). [CrossRef]
  28. X. Gao, Z. Li, J. Wang, L. Sun, and S. Zhuang, “Tunable gradient force of hyperbolic-cosine-Gaussian beam with vortices,” Opt. Lasers Eng. 48, 766–773 (2010). [CrossRef]
  29. X. Gao, Q. Zhan, J. Li, S. Hu, J. Wang, and S. Zhuang, “Dark focal spot shaping of hyperbolic-cosine-Gaussian beam,” J. Opt. Soc. Am. B 27, 696–702 (2010). [CrossRef]
  30. X. Lian and B. Lü, “Phase singularities of nonparaxial cosh-Gaussian vortex beams diffracted by a rectangular aperture,” Opt. Laser Technol. 43, 1264–1269 (2011). [CrossRef]
  31. X. Gao, Q. Wang, Q. Zhan, M. Yun, H. Guo, and S. Zhuang, “Focal patterns of higher order hyperbolic-cosine-Gaussian beam with one optical vortex,” Opt. Quantum Electron. 42, 369–380 (2011).
  32. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  33. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11, 2747–2752 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited