OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 26 — Sep. 10, 2013
  • pp: 6474–6480

Fabrication of two kinds of eight-fold photonic quasi-crystals assisted by a specially designed prism

Kai Shen, Guomin Jiang, Weidong Mao, Sarfaraz Baig, and Michael R. Wang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 26, pp. 6474-6480 (2013)
http://dx.doi.org/10.1364/AO.52.006474


View Full Text Article

Enhanced HTML    Acrobat PDF (1196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that two kinds of 2D eight-fold photonic quasi-crystals (PQCs) can be fabricated by a specially designed prism via single-exposure holographic lithography. The prism with five continuous side surfaces out of common eight symmetrical side surfaces, plus a top surface, is well designed for PQC fabrication. Compared with the traditional method of setting up eight free-space beams in the half-space for an eight-fold PQC fabrication, our specially designed prism reduces the number of beams, avoids the differences of beam-to-beam phases, and simplifies the fabrication process. The theory and computer simulation confirm the patterns of two kinds of PQCs by a single prism illumination recording. Further, these quasi-crystal patterns are successfully verified by experimental results under a scanning electron microscope. In addition, these samples show some good properties, such as uniformity over large area, the implementation of a single defect by underexposure, and symmetry break of the eight dots. Our special prism-assisted holographic lithography technique provides a base for further investigating the optical properties of these novel structures.

© 2013 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(230.5480) Optical devices : Prisms
(110.4235) Imaging systems : Nanolithography
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: June 27, 2013
Manuscript Accepted: July 24, 2013
Published: September 3, 2013

Citation
Kai Shen, Guomin Jiang, Weidong Mao, Sarfaraz Baig, and Michael R. Wang, "Fabrication of two kinds of eight-fold photonic quasi-crystals assisted by a specially designed prism," Appl. Opt. 52, 6474-6480 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-26-6474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasi-crystals,” Phys. Rev. Lett. 80, 956–959 (1998). [CrossRef]
  4. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000). [CrossRef]
  5. J. Yin, X. Huang, S. Liu, and S. Hu, “Photonic bandgap properties of 8-fold symmetric photonic quasi-crystals,” Opt. Commun. 269, 385–388 (2007). [CrossRef]
  6. P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006). [CrossRef]
  7. Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003). [CrossRef]
  8. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice,” Phys. Rev. Lett. 92, 123906 (2004). [CrossRef]
  9. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000). [CrossRef]
  10. J. Romero-Vivas, D. Chigrin, A. Lavrinenko, and C. Sotomayor Torres, “Resonant add-drop filter based on a photonic quasi-crystal,” Opt. Express 13, 826–835 (2005). [CrossRef]
  11. L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011). [CrossRef]
  12. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007). [CrossRef]
  13. D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).
  14. T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012). [CrossRef]
  15. N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013). [CrossRef]
  16. L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).
  17. Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003). [CrossRef]
  18. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998). [CrossRef]
  19. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000). [CrossRef]
  20. C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725–6760 (2003). [CrossRef]
  21. Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000). [CrossRef]
  22. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000). [CrossRef]
  23. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003). [CrossRef]
  24. W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007). [CrossRef]
  25. D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009). [CrossRef]
  26. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003). [CrossRef]
  27. W. D. Mao, G. Q. Liang, H. Zou, H. Z. Wang, R. Zhang, and Z. H. Zeng, “Design and fabrication of two-dimensional holographic photonic quasi-crystals with high-order symmetries,” J. Opt. Soc. Am. B 23, 2046–2050 (2006). [CrossRef]
  28. Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasi-crystals by single-beam holography,” Appl. Phys. Lett. 88, 251104 (2006). [CrossRef]
  29. Y. Yang and G. P. Wang, “Realization of periodic and quasi-periodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography,” Appl. Phys. Lett. 89, 111104 (2006). [CrossRef]
  30. X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006). [CrossRef]
  31. J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasi-crystals for visible wavelengths by optical interference holography,” Opt. Express 15, 4287–4295 (2007). [CrossRef]
  32. Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006). [CrossRef]
  33. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13, 9605–9611 (2005). [CrossRef]
  34. K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011). [CrossRef]
  35. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett. 34, 1783–1785 (2009). [CrossRef]
  36. D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, “The space groups of axial crystals and quasi-crystals,” Rev. Mod. Phys. 63, 699–733 (1991). [CrossRef]
  37. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited