OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 26 — Sep. 10, 2013
  • pp: 6497–6505

All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides

Vali Varmazyari, Hamidreza Habibiyan, and Hassan Ghafoorifard  »View Author Affiliations


Applied Optics, Vol. 52, Issue 26, pp. 6497-6505 (2013)
http://dx.doi.org/10.1364/AO.52.006497


View Full Text Article

Enhanced HTML    Acrobat PDF (677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a tunable low power slow light photonic crystal device with a silicon-on-insulator platform is proposed based on the combination of an asymmetric defects coupled-cavity waveguide and the electromagnetically induced transparency (EIT) phenomenon. Modulating the refractive index of special regions in the suggested structure by the EIT phenomenon leads to a relatively wideband slow light device with adjustable group index in the same structure. Using this feature, a small and compact delay line is introduced that has many applications in optical telecommunications, especially in buffers. The numerical calculations show that the group index of 80–98 over the slow light bandwidth from 3.2 to 2.6 nm is achievable for the central wavelength of 1546–1555 nm, respectively. The device malfunction, due to fabrication errors, is modeled, and the tunable characteristics of the proposed structure are verified.

© 2013 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.2790) Integrated optics : Guided waves
(130.5296) Integrated optics : Photonic crystal waveguides
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Integrated Optics

History
Original Manuscript: May 30, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 27, 2013
Published: September 5, 2013

Citation
Vali Varmazyari, Hamidreza Habibiyan, and Hassan Ghafoorifard, "All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides," Appl. Opt. 52, 6497-6505 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-26-6497


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultacold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  2. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012). [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef]
  4. P.-Ch. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, Sh.-W. Chang, and Sh.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004). [CrossRef]
  5. H. Su and Sh. L. Chuang, “Room-temperature slow light with semiconductor quantum-dot devices,” Opt. Lett. 31, 271–273 (2006). [CrossRef]
  6. J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002). [CrossRef]
  7. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005). [CrossRef]
  8. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  9. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
  10. Zh. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007). [CrossRef]
  11. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15, 3543–3549 (2007). [CrossRef]
  12. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007). [CrossRef]
  13. Y. Xu, L. Xiang, E. Cassan, D. Gaoand, and X. Zhang, “Slow light in an alternative row of ellipse-holephotonic crystal waveguide,” Appl. Opt. 52, 1155–1160 (2013). [CrossRef]
  14. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15, 1228–1233 (2007). [CrossRef]
  15. T. Kawasaki, D. Mori, and T. Baba, “Experimental observation of slow light in photonic crystal coupled waveguides,” Opt. Express 15, 10274–10281 (2007). [CrossRef]
  16. T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008). [CrossRef]
  17. M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008). [CrossRef]
  18. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  19. Sh. Lü, J. Zhao, and D. Zhang, “Flat band slow light in asymmetric photonic crystal waveguide based on microfluidic infiltration,” Appl. Opt. 49, 3930–3934 (2010). [CrossRef]
  20. S. Rawal, R. K. Sinha, and R. De La Rue, “Slow light propagation in liquid-crystal infiltrated silicon-on-insulator photonic crystal channel waveguides,” J. Lightwave Technol. 28, 2560–2571 (2010). [CrossRef]
  21. H. Chen, J. He, Y. Jin, and Z. Hong, “Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate,” Opt. Commun. 282, 653–656 (2009). [CrossRef]
  22. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  23. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009). [CrossRef]
  24. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009). [CrossRef]
  25. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Quantum Electron. 16, 192–199 (2010). [CrossRef]
  26. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010). [CrossRef]
  27. S. Raza, J. Grgíc, S. Xiao, and N. Mortensen, “Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay,” J. Eur. Opt. Soc. 5, 10009 (2010). [CrossRef]
  28. D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011). [CrossRef]
  29. A. E. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, “Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides,” Opt. Express 19, 24129–24138 (2011). [CrossRef]
  30. J. Liang, L. Ren, M. Yun, and X. Wang, “Wideband slow light with ultralow dispersionin a W1 photonic crystal waveguide,” Appl. Opt. 50, G98–G103 (2011). [CrossRef]
  31. D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012). [CrossRef]
  32. Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011). [CrossRef]
  33. H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012). [CrossRef]
  34. P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012). [CrossRef]
  35. Y. Zhao, Y. N. Zhang, D. Wu, and Q. Wang, “Wideband slow light with large group index and low dispersion in slotted photonic crystal waveguide,” J. Lightwave Technol. 30, 2812–2817 (2012). [CrossRef]
  36. R. S. Tucker, P. Ku, and C. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  37. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008). [CrossRef]
  38. M. Soljačić, J. D. Joannopoulos, and L. V. Hau, “Using electromagnetically induced transparency in photonic crystal cavities to obtain large non-linear effects,” U.S. Patent SpecificationUS20040175087 A1 (September9, 2004).
  39. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004). [CrossRef]
  40. P. Bermel, A. Rodrigues, S. G. Johnson, J. D. Joannopolous, and M. Soljačić, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006). [CrossRef]
  41. H. Habibiyan, H. Ghafoori-Fard, and A. Rostami, “Tunable all-optical photonic crystal channel drop filter for DWDM systems,” J. Opt. A 11, 065102 (2009). [CrossRef]
  42. T. C. Liau, J. Q. Shen, J. J. Wu, and T. J. Yang, “EIT based photonic logic gate,” U.S. Patent SpecificationUS20130016411 A1 (January17, 2013).
  43. M. O. Scully and M. S. Zubairy, Quantum Optics, 1st ed. (Cambridge, 1997).
  44. K. X. Guo and Y. B. Yu, “Nonlinear optical susceptibilities in Si/SiO2 parabolic quantum dots,” Chin. J. Nucl. Phys. 43, 932–941 (2005).
  45. R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).
  46. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  47. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  48. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  49. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  50. T. K. Liang and H. K. Tsong, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004). [CrossRef]
  51. S. A. schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]
  52. M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited