OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 26 — Sep. 10, 2013
  • pp: 6529–6536

Temperature dependence of anisotropic diffraction in holographic polymer-dispersed liquid crystal memory

Akifumi Ogiwara, Minoru Watanabe, and Retsu Moriwaki  »View Author Affiliations


Applied Optics, Vol. 52, Issue 26, pp. 6529-6536 (2013)
http://dx.doi.org/10.1364/AO.52.006529


View Full Text Article

Enhanced HTML    Acrobat PDF (851 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Grating devices using photosensitive organic materials play an important role in the development of optical and optoelectronic systems. High diffraction efficiency and polarization dependence achieved in a holographic polymer-dispersed liquid crystal (HPDLC) grating are expected to provide polarization-controllable optical devices, such as a holographic memory for optically reconfigurable gate arrays (ORGAs). However, the optical property is affected by the thermal modulation around the transition temperature (Tni) where the liquid crystal (LC) changes from nematic to isotropic phases. The temperature dependence of the diffraction efficiency in HPDLC grating is investigated using four types of LC composites comprised of LCs and monomers having different physical properties such as Tni and anisotropic refractive indices. The holographic memory formed by the LC with low anisotropic refractive index and LC diacrylate monomer implements optical reconfiguration for ORGAs at a high temperature beyond Tni of LC.

© 2013 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers

ToC Category:
Optical Devices

History
Original Manuscript: May 6, 2013
Revised Manuscript: June 18, 2013
Manuscript Accepted: August 13, 2013
Published: September 5, 2013

Citation
Akifumi Ogiwara, Minoru Watanabe, and Retsu Moriwaki, "Temperature dependence of anisotropic diffraction in holographic polymer-dispersed liquid crystal memory," Appl. Opt. 52, 6529-6536 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-26-6529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994). [CrossRef]
  2. T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
  3. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000). [CrossRef]
  4. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000). [CrossRef]
  5. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000). [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001). [CrossRef]
  7. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002). [CrossRef]
  8. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002). [CrossRef]
  9. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. Π. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002). [CrossRef]
  10. M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002). [CrossRef]
  11. A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585–4589 (2002). [CrossRef]
  12. Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004). [CrossRef]
  13. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004). [CrossRef]
  14. A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Thermal modulation of diffraction in near infrared sensitive holographic polymer dispersed liquid crystals,” Opt. Commun. 241, 23–28 (2004). [CrossRef]
  15. I. D. Olenik, M. Fally, and M. A. Ellabban, “Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E 74, 021707 (2006). [CrossRef]
  16. A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).
  17. A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
  18. A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008). [CrossRef]
  19. A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010). [CrossRef]
  20. A. Ogiwara, “Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings,” Appl. Opt. 50, 594–603 (2011). [CrossRef]
  21. J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999). [CrossRef]
  22. J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999). [CrossRef]
  23. J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000). [CrossRef]
  24. M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515 (2006).
  25. N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008). [CrossRef]
  26. D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008). [CrossRef]
  27. M. Nakajima and M. Watanabe, “Optical buffering technique under a space radiation environment,” Opt. Lett. 34, 3719–3721 (2009). [CrossRef]
  28. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays,” Appl. Opt. 49, 4255–4261 (2010). [CrossRef]
  29. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask,” Appl. Opt. 50, 6369–6376 (2011). [CrossRef]
  30. A. Ogiwara and M. Watanabe, “Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory,” Appl. Opt. 51, 5168–5177 (2012). [CrossRef]
  31. A. Ogiwara, M. Watanabe, and R. Moriwaki, “Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal,” Opt. Lett. 38, 1158–1160 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited