OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 26 — Sep. 10, 2013
  • pp: 6557–6561

Helical wavefront and beam shape modulated by advanced liquid crystal q-plate fabricated via photoalignment and analyzed by Michelson’s interference

Yao-Han Huang, Ming-Shian Li, Shih-Wei Ko, and Andy Y.-G. Fuh  »View Author Affiliations


Applied Optics, Vol. 52, Issue 26, pp. 6557-6561 (2013)
http://dx.doi.org/10.1364/AO.52.006557


View Full Text Article

Enhanced HTML    Acrobat PDF (567 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, electrically tunable advanced liquid crystal q-plates (ALCQPs) that combine two q values in one device to generate optical vortex beams were fabricated using a photoalignment method that involves the use of azo dye, a surfactant alignment material. The electrically tunable ALCQP device could be modulated to control the shape and polarization of a circularly polarized Gaussian laser beam that propagated through the device. A Gaussian beam modulated by an ALCQP under suitable applied voltage showed a variation beam shape with helical wavefront, as demonstrated by Michelson’s interference. This helical wavefront beam carries an orbital angular momentum and can be used in an optical tweezers system to trap, move, and rotate particles simultaneously.

© 2013 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.0230) Optical devices : Optical devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Devices

History
Original Manuscript: July 2, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 19, 2013
Published: September 9, 2013

Citation
Yao-Han Huang, Ming-Shian Li, Shih-Wei Ko, and Andy Y.-G. Fuh, "Helical wavefront and beam shape modulated by advanced liquid crystal q-plate fabricated via photoalignment and analyzed by Michelson’s interference," Appl. Opt. 52, 6557-6561 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-26-6557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  2. V. I. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995). [CrossRef]
  3. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005). [CrossRef]
  4. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  5. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef]
  6. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  7. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007). [CrossRef]
  8. L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007). [CrossRef]
  9. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  10. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size selective trapping with optical cogwheel tweezers,” Opt. Express 12, 4129–4135 (2004). [CrossRef]
  11. S. H. Tao, X. C. Yuan, J. Lin, and R. E. Burge, “Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges,” Opt. Express 14, 535–541 (2006). [CrossRef]
  12. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006). [CrossRef]
  13. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007). [CrossRef]
  14. J. Yu, C. Zhou, W. Jia, A. Hu, W. Cao, J. Wu, and S. Wang, “Three-dimensional Dammann vortex array with tunable topological charge,” Appl. Opt. 51, 2485–2495 (2012). [CrossRef]
  15. E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, “Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81, 052317 (2010). [CrossRef]
  16. R. Steiger, S. Bernet, and M. Ritsch-Marte, “Mapping of phase singularities with spiral phase contrast microscopy,” Opt. Express 21, 16282–16289 (2013). [CrossRef]
  17. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  18. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548–3553 (2004). [CrossRef]
  19. S. A. Schulz, T. Machula, E. Karimi, and R. W. Boyd, “Integrated multi vector vortex beam generator,” Opt. Express 21, 16130–16141 (2013). [CrossRef]
  20. M. J. Padgett and L. Allen, “Orbital angular momentum exchange in cylindrical-lens mode converters,” J. Opt. B Quant. Semiclass. Opt. 4, S17–S19 (2002). [CrossRef]
  21. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011). [CrossRef]
  22. Y.-H. Huang, S.-W. Ko, M.-S. Li, S.-C. Chu, and A. Y.-G. Fuh, “Modulation of shape and polarization of beam using a liquid crystal q-plate that is fabricated via photo-alignment,” Opt. Express 21, 10954–10961 (2013). [CrossRef]
  23. Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16, 3768–3775 (2008). [CrossRef]
  24. C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004). [CrossRef]
  25. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006). [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited