OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 26 — Sep. 10, 2013
  • pp: 6589–6598

Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging

Can Duan, Jingjing Sun, Sean Samuelson, and Huikai Xie  »View Author Affiliations

Applied Optics, Vol. 52, Issue 26, pp. 6589-6598 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1127 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Endoscopic optical coherence tomography (OCT) imaging has been demonstrated using microelectromechanical system (MEMS) technology by several research groups. The focus of this work is to study how the OCT imaging performance is affected by the radius of curvature of MEMS mirrors as well as the optical alignment accuracy inside small imaging probes. The goal of this study is to provide guidance for assembly tolerance and design optimization of OCT endoscopic probes. Gaussian beam propagation is used for theoretical analysis which is confirmed by optical simulation and verified experimentally with a time-domain OCT system as well. It has been found that the OCT imaging is very sensitive to the distance from the fiber end to the gradient-index (GRIN) lens, which needs to be controlled within 0.1 mm to achieve working distance (WD) longer than 3.5 mm and lateral resolution around 25 μm. The impact on image quality of the MEMS mirror is negligible if the radius of curvature of the mirror surface is greater than 200 mm. In addition, we studied the astigmatism introduced by cylindrical plastic tubing; the maximum astigmatism ratio is 1.1 when the WD is around 2.5 mm.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Imaging Systems

Original Manuscript: June 25, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 15, 2013
Published: September 9, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Can Duan, Jingjing Sun, Sean Samuelson, and Huikai Xie, "Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging," Appl. Opt. 52, 6589-6598 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. Puliafito, J. Fujimoto, and E. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6, 89–95 (1995). [CrossRef]
  3. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. Schuman, J. Duker, J. A. Izatt, E. Swanson, and J. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003). [CrossRef]
  5. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001). [CrossRef]
  6. M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000). [CrossRef]
  7. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic OCT of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750–755 (2000).
  8. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef]
  9. Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30, 53–55 (2005). [CrossRef]
  10. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic OCT by use of a two-axis MEMS scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006). [CrossRef]
  11. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15, 18130–18140 (2007). [CrossRef]
  12. J. Sun, S. Guo, L. Wu, L. Liu, S. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010). [CrossRef]
  13. L. Wu, S. R. Samuelson, J. Sun, W. Lau, S. Choe, B. S. Sorg, K. Jia, and H. Xie, “A 2.8 mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2011), pp. 33–36.
  14. J. Sun and H. Xie, “MEMS-based endoscopic optical coherence tomography,” Int. J. Opt. 20, 825629 (2011). [CrossRef]
  15. W. A. Benalcazar, W. Jung, and S. A. Boppart, “Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters,” Opt. Lett. 37, 1100–1102 (2012). [CrossRef]
  16. J. Alda, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering (Marcel Dekker, 2003), pp. 999–1013.
  17. R. Herloski, S. Marshall, and R. Antos, “Gaussian beam ray-equivalent modeling and optical design,” Appl. Opt. 22, 1168–1174 (1983). [CrossRef]
  18. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 15.
  19. J. Alda and G. D. Boreman, “On-axis and off-axis propagation of Gaussian beams in gradient index media,” Appl. Opt. 29, 2944–2950 (1990). [CrossRef]
  20. G. A. Massey and A. E. Siegman, “Reflection and refraction of Gaussian light beams at tilted ellipsoidal surfaces,” Appl. Opt. 8, 975–978 (1969). [CrossRef]
  21. CODE V 10.5 SR1, Synopsys, http://www.opticalres.com/cv/cvprodds_f.html .
  22. W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010). [CrossRef]
  23. L. Wu and H. Xie, “An electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Microlithogr., Microfabr., Microsyst. 8, 013030 (2009). [CrossRef]
  24. P. Meemon, K. Lee, S. Murali, and J. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47, 2452–2457 (2008). [CrossRef]
  25. J. Xi, L. Huo, Y. Wu, M. J. Cobb, J. H. Hwang, and X. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34, 1943–1945 (2009). [CrossRef]
  26. D. L. Wang, L. L. Fu, J. J. Sun, H. Z. Jia, and H. K. Xie, “Design optimization and implementation of a miniature optical coherence tomography probe based on a MEMS mirror,” Proc. SPIE 8191, 81910M (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited