OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 26 — Sep. 10, 2013
  • pp: 6616–6619

Multiwavelength generation based on a mode-locked fiber laser using carbon nanotube and fiber Fabry–Perot filter

Yuanwu Wang, Li Xia, Chengliang Yang, Yating Zhang, Lecheng Li, Zhenghai Xie, Songnian Fu, and Deming Liu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 26, pp. 6616-6619 (2013)
http://dx.doi.org/10.1364/AO.52.006616


View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a novel and compact configuration of stable multiwavelength generation with a uniform wavelength interval is proposed for the first time to our knowledge. It employs a mode-locked fiber laser using a carbon nanotube and spectrum-slicing technique. A flat rectangular optical output spectrum is demonstrated by adjusting the dispersion value of the fiber-loop cavity and the pump power. With a fiber Fabry–Perot filter, 33 wavelengths with 0.2 nm spacing are obtained among the power uniformity of 2.3 dB. Moreover, the variations of output power at each wavelength are all less than 0.1 dB, which implies excellent stability of the whole structure.

© 2013 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.6080) Optical devices : Sources

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 27, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 21, 2013
Published: September 9, 2013

Citation
Yuanwu Wang, Li Xia, Chengliang Yang, Yating Zhang, Lecheng Li, Zhenghai Xie, Songnian Fu, and Deming Liu, "Multiwavelength generation based on a mode-locked fiber laser using carbon nanotube and fiber Fabry–Perot filter," Appl. Opt. 52, 6616-6619 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-26-6616


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008). [CrossRef]
  2. A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011). [CrossRef]
  3. Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5, 364–366 (2008). [CrossRef]
  4. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009). [CrossRef]
  5. S. Y. Set, H. Y. Chi, Y. Chi, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004). [CrossRef]
  6. C. B. Mou, R. Arif, A. Rozhin, and S. Turitsyn, “Passively harmonic mode locked doped fiber laser with carbon nanotubes based saturable absorber,” Opt. Express 2, 884–890 (2012). [CrossRef]
  7. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009). [CrossRef]
  8. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007). [CrossRef]
  9. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996). [CrossRef]
  10. H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser, ” Opt. Lett. 28, 660–662 (2003). [CrossRef]
  11. J. H. Im, S. Y. Choi, F. Rotermund, and D. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18, 22141–22146 (2010). [CrossRef]
  12. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006). [CrossRef]
  13. W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007). [CrossRef]
  14. X. L. Li, Q. Z. Sun, J. H. Wo, M. L. Zhang, and D. M. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30, 1113–1120 (2012). [CrossRef]
  15. H. H. Lee, S. H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow-bandwidth seed light source,” IEEE Photon. Technol. Lett. 22, 1542–1544 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited