OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 27 — Sep. 20, 2013
  • pp: 6626–6635

Thermal response of a dental tissue induced by femtosecond laser pulses

K. P. Chang, T. W. Tsai, K. Y. Huang, C. H. Huang, S. Y. Wang, C. W. Cheng, J. K. Chen, and D. Y. Tzou  »View Author Affiliations

Applied Optics, Vol. 52, Issue 27, pp. 6626-6635 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1056 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports a theoretical and experimental study for thermal transport in a thin slice of human tooth induced by a 120 fs, 800 nm pulse laser at a repetition rate of 1 kHz. The surface reflectivity of enamel and the convection heat transfer coefficient were determined using an inverse heat transfer analysis. Instead of a fully three-dimensional modeling, two simplified two-dimensional (2D) planar and axisymmetric heat conduction models were proposed to simulate the temperature fields. The temperature responses obtained from the 2D planar and axisymmetric model agree well with the experimental measurements. On the other hand, the one-dimensional (1D) result significantly differs from the 2D axisymmetric one, suggesting that care should be taken when a 1D thermal model is considered for estimating temperature response.

© 2013 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(170.1850) Medical optics and biotechnology : Dentistry
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 27, 2013
Revised Manuscript: June 21, 2013
Manuscript Accepted: August 6, 2013
Published: September 13, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

K. P. Chang, T. W. Tsai, K. Y. Huang, C. H. Huang, S. Y. Wang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, "Thermal response of a dental tissue induced by femtosecond laser pulses," Appl. Opt. 52, 6626-6635 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Parker, “Surgical lasers and hard dental tissue,” British Dent. J. 202, 445–454 (2007). [CrossRef]
  2. http://www.webmd.com/oral-health/guide/laser-usedentistry .
  3. http://www.ada.org/1860.aspx .
  4. M. H. Niemz, L. Eisenmann, and T. Pioch, “Vergleich von drei Laser systemnzur Abtragung von Zahnschmann, Schweiz,” Monatsschr. Zahnmed 203, 1252–1256 (1993).
  5. P. Weigl, A. Kasenbacher, and K. Werelius, “Dental applications,” in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner, and H. Lubatschowski, eds. (Springer-Verlag, 2004), pp. 167–185.
  6. M. Straßl, H. Kopecek, M. Weinrotter, A. Bäcker, A. H. Al-Janabi, V. Wieger, and E. Wintner, “Novel applications of short and ultra-short pulses,” Appl. Surf. Sci. 247, 561–570 (2005). [CrossRef]
  7. P. Kohns, P. Zhou, and R. Störmann, “Effective laser ablation of enamel and dentine without thermal side effects,” J. Laser Appl. 9, 171–174 (1997). [CrossRef]
  8. A. V. Rode, N. R. Madsen, V. Z. Kolev, E. G. Gamaly, and B. Luther-Davies, “Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis,” Proc. SPIE 5340, 76–86 (2004). [CrossRef]
  9. H. Huang and Z. X. Guo, “Ultrashort pulsed laser ablation and stripping of freeze-dried dermis,” Lasers Med. Sci. 25, 517–524 (2010). [CrossRef]
  10. L. Ji, L. Li, H. Devlin, Z. Liu, J. Jiao, and D. Whitehead, “Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum,” Lasers Med. Sci. 27, 197–204 (2012). [CrossRef]
  11. I. Tetsuo, H. Yoshio, F. Keiji, N. Kan, M. Masayo, K. Takanori, and J. R. Chen, “Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction,” Dent. Mater. J. 25, 733–736 (2006).
  12. F. Keiji, T. Akihiro, N. Kan, I. Tetsuo, and H. Yoshio, “Data recording on dental prostheses for personal identification,” Jpn. J. Appl. Phys. 47, 7190–7194 (2008). [CrossRef]
  13. S. Nolte, “Micromachining,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Dekker, 2003), pp. 359–394.
  14. W. Seka, D. Fried, J. D. Featherstone, and S. F. Borzillary, “Light deposition in dental hard tissue and stimulated thermal response,” J. Dent. Res. 74, 1086–1092 (1995). [CrossRef]
  15. M. Niemz, Laser Tissue Interactions: Fundamentals and Application (Springer-Verlag, 2002), pp. 181–182.
  16. J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90, 141–148 (2008). [CrossRef]
  17. P. Pavlina, P. Christian, S. Robert, and L. Peter, “Temperature distribution in dental tissue after interaction with femtosecond laser pulses,” Appl. Opt. 46, 8374–8378 (2007). [CrossRef]
  18. M. Fahey, K. Mitra, O. Onyejekwe, and H. L. Mason, “Precise dental ablation using ultra-short pulsed 1552 nm laser,” Int. J. Heat Mass Transfer 51, 5732–5739 (2008). [CrossRef]
  19. M. K. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulselaser irradiation of tissues,” Int. J. Heat Mass Transfer 51, 5511–5521 (2008). [CrossRef]
  20. R. Li, X. Ma, S. Liang, Y. Sa, T. Jiang, and Y. Wang, “Optical properties of enamel and translucent composites by diffuse reflectance measurements,” J. Dent. 40s, e40–e47 (2012). [CrossRef]
  21. P. A. Ana, W. F. Velloso, and D. M. Zezell, “Three-dimensional finite element thermal analysis of dental tissues irradiated with Er, Cr: YSGG laser,” Rev. Sci. Instrum. 79, 093910 (2008). [CrossRef]
  22. Z. Azinovic, J. Keros, D. Bukovic, and A. Azinovic, “SEM analysis of tooth enamel,” Coll. Antropol. 27, 381–386 (2003).
  23. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot size,” Opt. Lett. 7, 196–198 (1982). [CrossRef]
  24. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).
  25. J. K. Chen and J. E. Beraun, “Investigation of thermal response caused by laser pulse heating,” Numer. Heat Transfer A 44, 705–722 (2003). [CrossRef]
  26. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005). [CrossRef]
  27. M. N. Ozisik, Heat Conduction (Wiley, 1993).
  28. J. V. Beck, B. Blackwell, and C. R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems (Wiley, 1985).
  29. American National Standard, “Standard method of test for thermal conductivity of materials by means of guarded hot plate,” ASTM Committee C16, designation (October1971), pp. 15–28.
  30. J. H. Blackwell, “A transient-flow method for determination of thermal constants of insulating materials in bulk,” J. Appl. Phys. 25, 137–145 (1954). [CrossRef]
  31. C. H. Huang and M. N. Ozisik, “A direct integration approach for simultaneously estimating temperature dependent thermal conductivity and heat capacity,” Numer. Heat Transfer, Part A 20, 95–110 (1991). [CrossRef]
  32. C. H. Huang and J. Y. Yan, “An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity,” Int. J. Heat Mass Transfer 38, 3433–3441 (1995). [CrossRef]
  33. C. H. Huang and C. Y. Huang, “An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue,” Appl. Math. Model. 31, 1785–1797 (2007). [CrossRef]
  34. T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” SIAM Rev. 45, 385–482 (2003). [CrossRef]
  35. B. Czel and G. Grof, “Genetic algorithm-based method for determination of temperature-dependent thermophysical properties,” Int. J. Thermophys. 30, 1975–1991 (2009). [CrossRef]
  36. C. Audet and J. E. Dennis, “Analysis of generalized pattern search,” SIAM J. Optim. 13, 889–903 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited