OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 27 — Sep. 20, 2013
  • pp: 6636–6644

On the performance of the physicality-constrained maximum-likelihood estimation of Stokes vector

Haofeng Hu, Guillaume Anna, and François Goudail  »View Author Affiliations


Applied Optics, Vol. 52, Issue 27, pp. 6636-6644 (2013)
http://dx.doi.org/10.1364/AO.52.006636


View Full Text Article

Enhanced HTML    Acrobat PDF (1575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the estimation of the Stokes vectors taking into account the physical realizability constraint. We propose a fast method for computing the constrained maximum-likelihood (CML) estimator for any measurement matrix, and we compare its performance with the classical empirical physicality-constrained estimator. We show that when the measurement matrix is based on four polarization states spanning a regular tetrahedron on the Poincaré sphere, the two estimators are very similar, but the CML provides a better estimation of the intensity. For an arbitrary measurement matrix, the CML estimator does not always yield better estimation performance than the empirical one: their comparative performances depend on the measurement matrix, the actual Stokes vector and the signal-to-noise ratio.

© 2013 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: May 29, 2013
Manuscript Accepted: August 8, 2013
Published: September 13, 2013

Citation
Haofeng Hu, Guillaume Anna, and François Goudail, "On the performance of the physicality-constrained maximum-likelihood estimation of Stokes vector," Appl. Opt. 52, 6636-6644 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-27-6636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Wu and J. T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt. 11, 014031 (2006). [CrossRef]
  2. J. A. North and M. J. Duggin, “Stokes vector imaging of the polarized sky-dome,” Appl. Opt. 36, 723–730 (1997). [CrossRef]
  3. D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 22–33 (1992). [CrossRef]
  4. J. Zallat and C. Heinrich, “Polarimetric data reduction: a Bayesian approach,” Opt. Express 15, 83–96 (2007). [CrossRef]
  5. M. R. Foreman, C. M. Romero, and P. Torok, “A priori information and optimisation in polarimetry,” Opt. Express 16, 15212–15227 (2008). [CrossRef]
  6. J. R. Valenzuela and J. A. Fessler, “Joint reconstruction of Stokes images from polarimetric measurements,” J. Opt. Soc. Am. A 26, 962–968 (2009). [CrossRef]
  7. J. R. Valenzuela, J. A. Fessler, and R. G. Paxman, “Joint estimation of Stokes images and aberrations from phase-diverse polarimetric measurements,” J. Opt. Soc. Am. A 27, 1185–1193 (2010). [CrossRef]
  8. S. Faisan, C. Heinrich, F. Rousseau, A. Lallement, and J. Zallat, “Joint filtering estimation of Stokes vector images based on a nonlocal means approach,” J. Opt. Soc. Am. A 29, 2028–2037 (2012). [CrossRef]
  9. J. E. Ahmad and Y. Takakura, “Estimation of physically realizable Mueller matrices from experiments using global constrained optimization,” Opt. Express 16, 14274–14287 (2008). [CrossRef]
  10. A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, “Maximum-likelihood estimation of Mueller matrices,” Opt. Lett. 31, 817–819 (2006). [CrossRef]
  11. H. Hu, R. Ossikovski, and F. Goudail, “Performance of maximum likelihood estimation of Mueller matrices taking into account physical realizability and Gaussian or Poisson noise statistics,” Opt. Express 21, 5117–5129 (2013). [CrossRef]
  12. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000). [CrossRef]
  13. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  14. S. M. Kay, Fundamentals of Statistical Signal Processing—Volume I: Estimation Theory (Prentice-Hall, 1993).
  15. F. Goudail, “Optimization of the contrast in active Stokes images,” Opt. Lett. 34, 121–123 (2009). [CrossRef]
  16. F. Goudail, “Noise minimization and equalization for Stokes polarimeters in the presence of signal-dependent Poisson shot noise,” Opt. Lett. 34, 647–649 (2009). [CrossRef]
  17. G. R. Boyer, B. F. Lamouroux, and B. S. Prade, “Automatic measurement of the Stokes vector of light,” Appl. Opt. 18, 1217–1219 (1979). [CrossRef]
  18. S. X. Wang and A. M. Weiner, “Fast wavelength-parallel polarimeter for broadband optical networks,” Opt. Lett. 29, 923–925 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited