OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 27 — Sep. 20, 2013
  • pp: 6652–6656

Formation of optical vortices through superposition of two Gaussian beams

Pravin Vaity, A. Aadhi, and R. P. Singh  »View Author Affiliations


Applied Optics, Vol. 52, Issue 27, pp. 6652-6656 (2013)
http://dx.doi.org/10.1364/AO.52.006652


View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We observe phase singularities in the superposed field of two Gaussian beams. It is seen that the formation of these singularities depends on the tilt between two Gaussian beams and the separation of their beam axes. By reversing the angle or the position of the beams, one can change the sign of the vortex. We have shown the formation of single as well as multiple vortices by changing the tilt angle and the position of two Gaussian beams. The experimental results are verified with theoretical analysis. We also observe that such a vortex structure can be formed through superposition of two backreflected Gaussian beams from any optical element with two flat surfaces, as illustrated through a beam splitter and a neutral density filter. This technique is very useful for generation of vortices with high-power lasers where one cannot use a spatial light modulator.

© 2013 Optical Society of America

OCIS Codes
(260.3160) Physical optics : Interference
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 11, 2013
Revised Manuscript: August 17, 2013
Manuscript Accepted: August 20, 2013
Published: September 13, 2013

Citation
Pravin Vaity, A. Aadhi, and R. P. Singh, "Formation of optical vortices through superposition of two Gaussian beams," Appl. Opt. 52, 6652-6656 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-27-6652


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E. Wolf, ed. (Elsevier Science EV, 1999), pp. 291–372.
  2. M. Soskin and M. Vasnetsov, “Singular optics,” in Progress in Optics, E. Wolf, ed. (Elsevier Science EV, 2001), pp. 219–276.
  3. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  5. G. Molina-Terriza, J. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007). [CrossRef]
  6. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre–Gaussian modes by computer-generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998). [CrossRef]
  7. C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43, 2397–2399 (2004). [CrossRef]
  8. K. J. Moh, X.-C. Yuan, W. C. Cheong, L. S. Zhang, J. Lin, B. P. S. Ahluwalia, and H. Wang, “High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate,” Appl. Opt. 45, 1153–1161 (2006). [CrossRef]
  9. M. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  10. A. Kumar, P. Vaity, and R. P. Singh, “Crafting the core asymmetry to lift the degeneracy of optical vortices,” Opt. Express 19, 6182–6190 (2011). [CrossRef]
  11. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre–Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642–1651 (2008). [CrossRef]
  12. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012). [CrossRef]
  13. N. B. Baranova, A. V. Mamaev, N. F. Pilipetskii, V. V. Shkukov, and B. Y. Zel’dovich, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).
  14. K. O’Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Opt. Express 14, 3039–3044 (2006). [CrossRef]
  15. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46, 2893–2898 (2007). [CrossRef]
  16. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Appl. Opt. 46, 7862–7867 (2007). [CrossRef]
  17. D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Vortex lattice generation using interferometric techniques based on lateral shearing,” Opt. Commun. 282, 2692–2698 (2009). [CrossRef]
  18. J. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited