OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 27 — Sep. 20, 2013
  • pp: 6676–6684

Polarization-insensitive and broad-angle self-collimation in a two-dimensional photonic crystal with rectangular air holes

Liyong Jiang, Hong Wu, and Xiangyin Li  »View Author Affiliations


Applied Optics, Vol. 52, Issue 27, pp. 6676-6684 (2013)
http://dx.doi.org/10.1364/AO.52.006676


View Full Text Article

Enhanced HTML    Acrobat PDF (2560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we have systematically investigated the polarization-insensitive and broad-angle self-collimation behavior in a square-lattice two-dimensional photonic crystal (PhC) with rectangular air holes. By analyzing the band structures and the corresponding equi-frequency contours (EFCs), it is found that such PhC can show special dispersion properties when the half-length L and half-width W of rectangular air holes are appropriately changed. First, compared with conventional square-lattice PhCs with circular or square air holes, such PhC is easier to support polarization-insensitive self-collimation (PISC) based on the EFCs for the second band. Meanwhile, the PISC behavior such as working frequency range and effective incident angle can be more flexibly adjusted by changing the structural parameters of rectangular air holes. Second, such PhC can show long flat EFCs for the TM-3 band. This is quite helpful for supporting broad-angle self-collimation. In particular, when L=0.5a and W/L=0.8, this PhC will degenerate to a one-dimensional grating PhC. It can show good all-angle self-collimation behavior with an improved relative bandwidth (about 19.98%) compared with previous works. It also presents advantages in practical applications due to a relatively convenient fabrication process.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 8, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: August 22, 2013
Published: September 13, 2013

Citation
Liyong Jiang, Hong Wu, and Xiangyin Li, "Polarization-insensitive and broad-angle self-collimation in a two-dimensional photonic crystal with rectangular air holes," Appl. Opt. 52, 6676-6684 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-27-6676


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  3. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]
  4. L. Y. Jiang, H. Wu, and X. Y. Li, “Dual-negative-refraction and imaging effects in normal two-dimensional photonic crystals with hexagonal lattices,” Opt. Lett. 37, 1829–1831 (2012). [CrossRef]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  7. L. J. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: from superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003). [CrossRef]
  8. D. Chigrin, S. Enoch, C. Sotomayor Torres, and G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11, 1203–1211 (2003). [CrossRef]
  9. X. F. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3523 (2003). [CrossRef]
  10. S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004). [CrossRef]
  11. D. Y. Zhao, J. Zhang, P. J. Yao, X. Y. Jiang, and X. Y. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007). [CrossRef]
  12. Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287–9292 (2007). [CrossRef]
  13. D. W. Prather, S. Y. Shi, D. M. Pustai, C. H. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004). [CrossRef]
  14. R. Iliew, C. Etrich, T. Pertsch, E. Lederer, and K. Staliunas, “Subdiffractive all-photonic crystal Fabry–Perot resonators,” Opt. Lett. 33, 2695–2697 (2008). [CrossRef]
  15. D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007). [CrossRef]
  16. Y. C. Chuang and T. J. Suleski, “Complex rhombus lattice photonic crystals for broadband all-angle self-collimation,” J. Opt. 12, 035102 (2010). [CrossRef]
  17. R. E. Hamam, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Broadband super-collimation in a hybrid photonic crystal structure,” Opt. Express 17, 8109–8118 (2009). [CrossRef]
  18. W. Y. Liang, T. B. Wang, C. P. Yin, J. W. Dong, F. C. Leng, and H. Z. Wang, “Super-broadband non-diffraction guiding modes in photonic crystals with elliptical rods,” J. Phys. D 43, 075103 (2010). [CrossRef]
  19. F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. M. de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008). [CrossRef]
  20. J. M. Park, S. G. Lee, H.-R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18, 13083–13093 (2010). [CrossRef]
  21. L. C. Botten, T. P. White, C. M. de Sterke, and R. C. McPhedran, “Wide-angle coupling into rod-type photonic crystals with ultralow reflectance,” Phys. Rev. E 74, 026603 (2006). [CrossRef]
  22. X. P. Shen, K. Han, Y. F. Shen, H. P. Li, Z. W. Xiao, and J. Zheng, “Self-collimation of unpolarized electromagnetic waves in 2D photonic crystals,” Acta Phys. Sin. 55, 2760–2764 (2006).
  23. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdr, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007). [CrossRef]
  24. Y. Xu, X. J. Chen, S. Lan, Q. F. Dai, Q. Guo, and L. J. Wu, “Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry,” Opt. Express 17, 4903–4912 (2009). [CrossRef]
  25. J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009). [CrossRef]
  26. Y. Xu, X. J. Chen, S. Lan, Q. Guo, W. Hu, and L. J. Wu, “The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry,” J. Opt. A 10, 085201 (2008). [CrossRef]
  27. H. Zhang, Y. Cen, L. F. Chen, H. Y. Zhu, L. J. Qian, and D. Y. Fan, “Full-angle collimations of two-dimensional photonic crystals with ultrahigh-index background materials,” J. Opt. 12, 045103 (2010). [CrossRef]
  28. Z. H. Wu, K. Xie, H. J. Yang, P. Jiang, and X. J. He, “All-angle self-collimation in two-dimensional rhombic-lattice photonic crystals,” J. Opt. 14, 015002 (2012). [CrossRef]
  29. J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photonic. Nanostruct. 8, 163–171 (2010). [CrossRef]
  30. S. G. Johnson and J. D. Joannopoulos, “MIT Photonic-Bands package,” The MIT Photonic-Bands Package Home Page. http://ab-initio.mit.edu/mpb/ (2008).
  31. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited